-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathscalar.ts
55 lines (53 loc) · 1.91 KB
/
scalar.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {Scalar} from '../tensor';
import {DataType} from '../types';
import {isTypedArray} from '../util';
import {makeTensor} from './tensor_ops_util';
/**
* Creates rank-0 `tf.Tensor` (scalar) with the provided value and dtype.
*
* The same functionality can be achieved with `tf.tensor`, but in general
* we recommend using `tf.scalar` as it makes the code more readable.
*
* ```js
* tf.scalar(3.14).print();
* ```
*
* @param value The value of the scalar.
* @param dtype The data type.
*
* @doc {heading: 'Tensors', subheading: 'Creation'}
*/
export function scalar(
value: number|boolean|string|Uint8Array, dtype?: DataType): Scalar {
if (((isTypedArray(value) && dtype !== 'string') || Array.isArray(value)) &&
dtype !== 'complex64') {
throw new Error(
'Error creating a new Scalar: value must be a primitive ' +
'(number|boolean|string)');
}
if (dtype === 'string' && isTypedArray(value) &&
!(value instanceof Uint8Array)) {
throw new Error(
'When making a scalar from encoded string, ' +
'the value must be `Uint8Array`.');
}
const shape: number[] = [];
const inferredShape: number[] = [];
return makeTensor(value, shape, inferredShape, dtype) as Scalar;
}