-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathunique.ts
91 lines (86 loc) · 3.21 KB
/
unique.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {ENGINE} from '../engine';
import {Unique, UniqueAttrs, UniqueInputs} from '../kernel_names';
import {NamedAttrMap} from '../kernel_registry';
import {Tensor, Tensor1D} from '../tensor';
import {NamedTensorMap} from '../tensor_types';
import {convertToTensor} from '../tensor_util_env';
import {TensorLike} from '../types';
import {assert} from '../util';
import {op} from './operation';
/**
* Finds unique elements along an axis of a tensor.
*
* It returns a tensor `values` containing all of the unique elements along the
* `axis` of the given tensor `x` in the same order that they occur along the
* `axis` in `x`; `x` does not need to be sorted. It also returns a tensor
* `indices` the same size as the number of the elements in `x` along the `axis`
* dimension. It contains the index in the unique output `values`.
*
* ```js
* // A 1-D tensor
* const a = tf.tensor1d([1, 1, 2, 4, 4, 4, 7, 8, 8]);
* const {values, indices} = tf.unique(a);
* values.print(); // [1, 2, 4, 7, 8,]
* indices.print(); // [0, 0, 1, 2, 2, 2, 3, 4, 4]
* ```
*
* ```js
* // A 2-D tensor with axis=0
* //
* // 'a' is: [[1, 0, 0],
* // [1, 0, 0],
* // [2, 0, 0]]
* const a = tf.tensor2d([[1, 0, 0], [1, 0, 0], [2, 0, 0]]);
* const {values, indices} = tf.unique(a, 0)
* values.print(); // [[1, 0, 0],
* // [2, 0, 0]]
* indices.print(); // [0, 0, 1]
* ```
*
* ```js
* // A 2-D tensor with axis=1
* //
* // 'a' is: [[1, 0, 0],
* // [1, 0, 0],
* // [2, 0, 0]]
* const a = tf.tensor2d([[1, 0, 0], [1, 0, 0], [2, 0, 0]]);
* const {values, indices} = tf.unique(a, 1)
* values.print(); // [[1, 0],
* // [1, 0],
* // [2, 0]]
* indices.print(); // [0, 1, 1]
* ```
* @param x A tensor (int32, string, bool).
* @param axis The axis of the tensor to find the unique elements.
* @returns [uniqueElements, indices] (see above for details)
*
* @doc {heading: 'Operations', subheading: 'Evaluation'}
*/
function unique_<T extends Tensor>(
x: T|TensorLike, axis = 0): {values: T, indices: Tensor1D} {
const $x = convertToTensor(x, 'x', 'unique', 'string_or_numeric');
assert($x.rank > 0, () => 'The input tensor must be at least 1D');
const inputs: UniqueInputs = {x: $x};
const attrs: UniqueAttrs = {axis};
const [values, indices] = ENGINE.runKernel(
Unique, inputs as unknown as NamedTensorMap,
attrs as unknown as NamedAttrMap) as [T, Tensor1D];
return {values, indices};
}
export const unique = /* @__PURE__ */ op({unique_});