Skip to content

从零到一实现了一个多模态大模型,并命名为Reyes(睿视),R:睿,eyes:眼。Reyes的参数量为8B,视觉编码器使用的是InternViT-300M-448px-V2_5,语言模型侧使用的是Qwen2.5-7B-Instruct,Reyes也通过一个两层MLP投影层连接视觉编码器与语言模型。

Notifications You must be signed in to change notification settings

yujunhuics/Reyes

Repository files navigation

Reyes(睿视)

详细介绍:https://mp.weixin.qq.com/s/CH5FoRxoN6WHXPOMwG9gDA

推理

使用方式:将本仓库中的modeling_reyes.py文件替换modelscrope下载的modeling_reyes.py运行即可。 batch推理详细见:batch_inference.ipynb

  • 串行推理
import torch
from modelscope import AutoTokenizer, AutoModel
from PIL import Image
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)


def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform


def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio


def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images


def load_image(image_file, input_size=448, max_num=12):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values


def preprocess_image(file_path, dynamic=True, max_num=6, image_size=448):
    try:
        if dynamic:
            return load_image(file_path, max_num=max_num).to(torch.bfloat16).cuda()
        else:
            img = Image.open(file_path).convert('RGB')
            transform = build_transform(image_size)
            pixel_values = transform(img)
            return torch.stack([pixel_values]).to(torch.bfloat16).cuda()
    except Exception as e:
        raise RuntimeError(f"Error processing image: {e}")


path = "Reyes-8B"

model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
).eval().cuda()

# print(model)

tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
generation_config = dict(max_new_tokens=2048, do_sample=False)

# single-image single-round conversation
file_path = 'tmp.png'
pixel_values = preprocess_image(file_path, dynamic=True)
question = '<image>\nPlease describe the image shortly.'
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(f'User: {question}\nAssistant: {response}')

# pure-text conversation
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')

图片token化

import torch
from PIL import Image
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)


def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform


def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio


def dynamic_preprocess(image, min_num=1, max_num=2, image_size=448, use_thumbnail=True):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images


def load_image(image_file, input_size=448, max_num=1):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values


def convert_image_token(image):
    if dynamic_image_size:
        image = Image.open(image).convert('RGB')
        num_tile = len(dynamic_preprocess(image))
        tile_pos_identifiers = [f"<tile_{i}>" for i in range(1, num_tile)] + ["<tile_global_thumbnail>"]
        image_tokens = ''
        for tile_pos_identifier in tile_pos_identifiers:
            image_tokens += tile_pos_identifier + IMG_CONTEXT_TOKEN * num_image_token
        image_tokens = IMG_START_TOKEN + image_tokens + IMG_END_TOKEN
    else:
        image_tokens = IMG_CONTEXT_TOKEN * num_image_token
        image_tokens = IMG_START_TOKEN + image_tokens + IMG_END_TOKEN
    return image_tokens


if __name__ == '__main__':
    IMG_START_TOKEN = '<|vision_start|>'
    IMG_CONTEXT_TOKEN = '<|vision_pad|>'
    IMG_END_TOKEN = '<|vision_end|>'

    force_image_size = 488
    down_sample_ratio = 0.5
    dynamic_image_size = True
    num_image_token = 256
    imagetokens = convert_image_token('test.png')
    print(imagetokens)

About

从零到一实现了一个多模态大模型,并命名为Reyes(睿视),R:睿,eyes:眼。Reyes的参数量为8B,视觉编码器使用的是InternViT-300M-448px-V2_5,语言模型侧使用的是Qwen2.5-7B-Instruct,Reyes也通过一个两层MLP投影层连接视觉编码器与语言模型。

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published