维纳-辛钦定理

在应用数学中,维纳-辛钦定理(英语:Wiener–Khinchin theorem),又称维纳-辛钦-爱因斯坦定理或辛钦-柯尔莫哥洛夫定理。该定理指出:宽平稳随机过程的功率谱密度是其自相关函数的傅里叶变换。

历史

诺伯特·维纳在1930年证明了这个定理对于确定性函数的情况;

辛钦后来对于平稳随机过程得出了类似的结果并且于1934年发表了它。

阿尔伯特·爱因斯坦在1914年的一份简短的备忘录里阐述了这个想法,但并未给出证明。

连续时间过程的情形

对于连续时间的情形,维纳-辛钦定理表明若 x{\displaystyle x}x 是一个宽平稳过程,以致其由统计期望值 E 定义的自相关函数(有时称作自协方差) rxx(τ)=E⁡[ x(t)x∗(t−τ) ]{\displaystyle r_{xx}(\tau )=\operatorname {E} {\big [}\,x(t)x^{*}(t-\tau )\,{\big ]}}rxx(τ)=E[x(t)x(tτ)] 存在,并对所有延迟 τ{\displaystyle \tau }τ 都是有限的,则在频域 −∞<f<∞{\displaystyle -\infty <f<\infty }<f< 存在一个单调函数 F(f){\displaystyle F(f)}F(f) 使得

rxx(τ)=∫−∞∞e2πiτfdF(f){\displaystyle r_{xx}(\tau )=\int _{-\infty }^{\infty }e^{2\pi i\tau f}dF(f)}rxx(τ)=e2πiτfdF(f)

其中该积分为黎曼-斯蒂尔杰斯积分。这是自相关函数的一种谱分解。FFF 称为功率谱分布函数,是一个统计分布函数。它有时称作积分谱。(星号表示复共轭,当随机过程是实过程时可以将其省去。)

注意到 x(t) {\displaystyle x(t)\,}x(t)的傅里叶变换不总是存在,因为平稳随机过程不总是平方可积或绝对可积。也不会假定 rxx{\displaystyle r_{xx}}rxx 是绝对可积的,所以也不需要有傅里叶变换。

但若 F(f){\displaystyle F(f)}F(f) 是绝对连续的,例如当为纯粹不确定过程时,F{\displaystyle F}F 几乎处处可微。在这种情况下,可以通过对 F{\displaystyle F}F 取平均导数来定义 x(t) {\displaystyle x(t)\,}x(t) 的功率谱密度 S(f){\displaystyle S(f)}S(f)。因为 F{\displaystyle F}F 的左、右导数处处存在,所以处处都有
S(f)=12(lim⁡ϵ↓01ϵ(F(f+ϵ)−F(f))+lim⁡ϵ↑01ϵ(F(f+ϵ)−F(f))) {\displaystyle S(f)={\frac {1}{2}}(\lim _{\epsilon \downarrow 0}{\frac {1}{\epsilon}}(F(f+\epsilon )-F(f))+\lim _{\epsilon \uparrow 0}{\frac {1}{\epsilon }}(F(f+\epsilon )-F(f)))} S(f)=21(ϵ0limϵ1(F(f+ϵ)F(f))+ϵ0limϵ1(F(f+ϵ)F(f)))(得到 FFF 为其平均导数的积分),该定义简化为
rxx(τ)=∫−∞∞S(f)e2πiτfdf.{\displaystyle r_{xx}(\tau )=\int _{-\infty }^{\infty }S(f)e^{2\pi i\tau f}df.}rxx(τ)=S(f)e2πiτfdf.

若现在假设 r 和 S 满足傅里叶逆变换存在的必要条件,维纳-辛钦定理就能说 r 和 S 是一对傅里叶变换对
S(f)=∫−∞∞rxx(τ)e−2πifτdτ. {\displaystyle S(f)=\int _{-\infty }^{\infty }r_{xx}(\tau )e^{-2\pi if\tau }d\tau .} S(f)=rxx(τ)e2πifτdτ.

离散时间过程的情形

对于离散随机过程 x[n] {\displaystyle x[n]\ }x[n] ,其功率谱密度为

Sxx(f)=∑k=−∞∞rxx[k]e−j2πkf{\displaystyle S_{xx}(f)=\sum _{k=-\infty }^{\infty }r_{xx}[k]e^{-j2\pi kf}} Sxx(f)=k=rxx[k]ej2πkf

其中 rxx[k]=E⁡[ x[n]x∗[n−k] ]{\displaystyle r_{xx}[k]=\operatorname {E} {\big [}\,x[n]x^{*}[n-k]\,{\big ]}}rxx[k]=E[x[n]x[nk]]Sxx(f) {\displaystyle S_{xx}(f)\ }Sxx(f)  是离散函数 x[n] {\displaystyle x[n]\,}x[n] 的功率谱密度。由于 x[n] {\displaystyle x[n]\,}x[n] 是采样得到的离散时间序列,其谱密度在频域上是周期函数。

应用

当输入和输出皆不可被方积,导致其傅里叶变换不存在时,此定理可应用于分析线性时不变系统(LTI系统)。我们可知,LTI系统输出的自相关函数之傅里叶变换相等于系统输入的自相关函数之傅里叶变换与系统脉冲响应之傅立叶变换的平方之相乘。当输入输出信号的傅里叶变换不存在时,这仍旧成立,因为这些信号不可被平方积分,因此系统的输入和输出无法和通过傅立叶变换的脉冲响应直接相关。

由于信号自相关函数之傅里叶变换是信号的功率谱,这相当于说,输出功率谱等于输入功率谱乘以能量传递函数。

这被用在以参数化的方法估计功率谱。

表述差异

在许多教科书和在许多技术文献是默认假定的自相关函数的傅里叶变换和功率谱密度是有效的,以及维纳-辛钦定理很简单地指出,因为如果它表示傅里叶变换自相关函数等于功率谱密度,忽略收敛所有的问题。(爱因斯坦就是一个例子)。但是定理(陈述为这里),由诺伯特·维纳亚历山大·辛钦应用于样品的功能(信号)宽感平稳随机过程,信号的傅立叶变换是不存在的。维纳的贡献的全部意义是使一个宽义平稳随机过程的一个样本函数自相关函数的谱分解感即使在积分进行傅立叶变换和傅立叶逆没有任何意义。

有些人提到与R作为自协方差函数。他们然后进行归一化,通过用R(0)R(0)R(0),划分以获得他们称之为自相关函数。

总结一下FFT和维纳辛钦定理求解PSD的问题-功率谱图.rar 早上在论坛上问了两个问题, 一个是关于FFT求频谱时纵坐标的值问题 https://www.ilovematlab.cn/thread-27092-1-1.html 还有一个是用维纳辛钦定理求解PSD时出现的问题 https://www.ilovematlab.cn/thread-27133-1-1.html 经过达人们的指点,和自己的总结,获得一点心得,在这里与大家分享一下:) 1.FFT求频谱 [CODE] Fs = 40; n = 0:1/Fs:159*1/Fs; x = sin sin; N = length; X = fftshift); Px1 = X.*conj/N; plot*Fs/N,Px1); grid on; axis title; 首先,fftshift的问题,以前上数字信号处时,老师专门给提出了这个函数,但是我发现论坛里好多不太明白这个函数意义的,OO~,一般,fft得到的是频谱范围在【0-2*pi】范围内的频谱,以高频pi为中心,但是一般使用过程中,使用的频谱习惯以低频0为中心,fftshift的功能就是将频谱进行移位,使之在【-pi,pi】之间; 另外,纵坐标的问题,版主edifier2008提示说用/N的方法归一化,我试了一下,每次采样长度变大时,纵坐标的整体值都会变大,/N之后,值变为1之内了,但是并不是论算法中得到的1. 图形如下: fft.jpg fft 2.维纳辛钦定理求解功率谱的问题 [CODE] Fs = 40; n = 0:1/Fs:159*1/Fs; x = sin sin; N = length; Rx = xcorr; Px2 = fftshift); plot*Fs/,abs); grid on; axis title; 图形如下: fftwei.jpg 程序中可以看出,也要使用fftshift对fft得到的频谱进行移位以得到以低频0为中心的频谱,另外,得到的功率谱纵轴值特别大,是不是也需要除以采样长度,我试了一下,仍然是很大,个人认为,在MATLAB中计算自相关函数以及计算FFT时,都没有对加和进行归一,将/N这一个系数可能都给省略掉了。 此外,我在很多教材里面看了不少里面的例题,都没有注意纵轴值的问题,我觉得在进行频谱分析,重点在于频率点,以及相近频率点的谱图是不是能够分辨出来,而对于各谱的大小,有个相对的比较即可。 不当之处,还望大家给与指正,:) :victory:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值