特征函数的介绍
设p(x)p(x)p(x)是随机变量XXX密度函数,则p(x)p(x)p(x)的傅里叶变换是φ(t)=∫−∞∞eitxp(x)dx,\varphi(t)=\int^{\infty}_{-\infty}e^{itx}p(x)dx,φ(t)=∫−∞∞eitxp(x)dx,由数学期望的概念可知,φ(t)\varphi(t)φ(t)恰好是E(eitX)\mathbb{E}(e^{itX})E(eitX)。特征函数是处理概率论问题的有力工具,其作用在于:
- 可将卷积运算化成乘法运算;
- 可将求各阶矩的积分运算化成微分运算;
- 可将求随机变量序列的极限分布化成一般的函数极限问题 。
特征函数的定义
设XXX是一随机变量,称φ(t)=E(eitX)\varphi(t)=\mathbb{E}(e^{itX})φ(t)=E(eitX)为XXX的特征函数,其中i=−1i=\sqrt{-1}i=−1是虚数单位。
- 当XXX为离散随机变量时,φ(t)=∑k=1∞eitxkpk\varphi(t)=\sum\limits_{k=1}^{\infty}e^{itx_k}p_kφ(t)=k=1∑∞eitxkpk
- 当XXX为连续随机变量时,φ(t)=∫−∞+∞eitxp(x)dx\varphi(t)=\int^{+\infty}_{-\infty}e^{itx}p(x)dxφ(t)=∫−∞+∞eitxp(x)dx
特征函数的计算中用到复变函数,因此注意:
- 欧拉公式:eitx=cos(tx)+isin(tx)e^{itx}=\cos(tx)+i\sin(tx)eitx=cos(tx)+isin(tx)
- 复数的共轭:a+bi‾=a−bi\overline{a+bi}=a-bia+bi=a−bi
- 复数的模:∣a+bi∣=a2+b2|a+bi|=\sqrt{a^2+b^2}∣a+bi∣=a2+b2
特征函数的性质
- 性质1:∣φ(t)∣≤φ(0)=1|\varphi(t)|\le\varphi(0)=1∣φ(t)∣≤φ(0)=1
- 性质2:φ(−t)=φ(t)‾\varphi(-t)=\overline{\varphi(t)}φ(−t)=φ(t)
- 性质3:φaX+b(t)=eibtφX(at)\varphi_{aX+b}(t)=e^{ibt}\varphi_{X}(at)φaX+b(t)=eibtφX(at)
- 性质4:若XXX与YYY独立,则φX+Y(t)=φX(t)φY(t)\varphi_{X+Y}(t)=\varphi_X(t)\varphi_Y(t)φX+Y(t)=φX(t)φY(t)
- 性质5:φ(k)(0)=ikE(X)\varphi^{(k)}(0)=i^k\mathbb{E}^(X)φ(k)(0)=ikE(X)
常用分布的特征函数
- 单点分布 P(X=a)=1P(X=a)=1P(X=a)=1,其特征函数为φ(t)=eita\varphi(t)=e^{ita}φ(t)=eita
- 0-1分布 P(X=x)=px(1−p)1−xP(X=x)=p^x(1-p)^{1-x}P(X=x)=px(1−p)1−x,x=0,1x=0,1x=0,1,其特征函数为φ(t)=peit+q\varphi(t)=pe^{it}+qφ(t)=peit+q,其中q=1−pq=1-pq=1−p。
- 泊松分布P(λ)P(\lambda)P(λ) P(X=k)=λkk!e−λP(X=k)=\frac{\lambda^k}{k!}e^{-\lambda}P(X=k)=k!λke−λ,k=0,1,⋯k=0,1,\cdotsk=0,1,⋯,其特征函φ(t)=∑k=0∞eiktλkk!e−λ=e−λ∑k=0∞(λeit)kk!e−λeiteλeit=e−λeλeit=eλ(eit−1)\begin{aligned}\varphi(t)&=\sum\limits_{k=0}^{\infty}e^{ikt}\frac{\lambda^k}{k!}e^{-\lambda}=e^{-\lambda}\sum\limits_{k=0}^{\infty}\frac{(\lambda e^{it})^k}{k!}e^{-\lambda e^{it}}e^{\lambda e^{it}}\\&=e^{-\lambda}e^{\lambda e^{it}}=e^{\lambda(e^{it}-1)}\end{aligned}φ(t)=k=0∑∞eiktk!λke−λ=e−λk=0∑∞k!(λeit)ke−λeiteλeit=e−λeλeit=eλ(eit−1)
- 均匀分布 U(a,b)U(a,b)U(a,b) 因为密度函数为p(x)={1b−a,a<x<b0,其它p(x)=\left\{\begin{array}{ll}\frac{1}{b-a},&a<x<b\\0,&其它\end{array}\right.p(x)={b−a1,0,a<x<b其它所以其特征函数为φ(t)=∫abeitxb−adx=eibt−eiatit(b−a)\varphi(t)=\int^b_a\frac{e^{itx}}{b-a}dx=\frac{e^{ibt}-e^{iat}}{it(b-a)}φ(t)=∫abb−aeitxdx=it(b−a)eibt−eiat
- 标准正态分布N(0,1)N(0,1)N(0,1) 因为密度函数为p(x)=12πe−x22,−∞<x<∞p(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, \quad -\infty<x<\inftyp(x)=2π1e−2x2,−∞<x<∞所以其特征函数为φ(t)=e−t22\varphi(t)=e^{-\frac{t^2}{2}}φ(t)=e−2t2
- 指数分布Exp(λ)Exp(\lambda)Exp(λ) 因为密度函数为p(x)={λe−λx,x>00,x≤0p(x)=\left\{\begin{array}{ll}\lambda e^{-\lambda x},&x > 0\\0,&x \le0\end{array}\right.p(x)={λe−λx,0,x>0x≤0所以其特征函数表示为φ(t)=∫0∞eitxλeλxdx=(1−itλ)−1\varphi(t)=\int^{\infty}_{0}e^{itx}\lambda e^{\lambda x}dx=\left(1-\frac{it}{\lambda}\right)^{-1}φ(t)=∫0∞eitxλeλxdx=(1−λit)−1