概率论中的特征函数

特征函数的介绍

p(x)p(x)p(x)是随机变量XXX密度函数,则p(x)p(x)p(x)的傅里叶变换是φ(t)=∫−∞∞eitxp(x)dx,\varphi(t)=\int^{\infty}_{-\infty}e^{itx}p(x)dx,φ(t)=eitxp(x)dx,由数学期望的概念可知,φ(t)\varphi(t)φ(t)恰好是E(eitX)\mathbb{E}(e^{itX})E(eitX)。特征函数是处理概率论问题的有力工具,其作用在于:

  • 可将卷积运算化成乘法运算;
  • 可将求各阶矩的积分运算化成微分运算;
  • 可将求随机变量序列的极限分布化成一般的函数极限问题 。

特征函数的定义

XXX是一随机变量,称φ(t)=E(eitX)\varphi(t)=\mathbb{E}(e^{itX})φ(t)=E(eitX)XXX的特征函数,其中i=−1i=\sqrt{-1}i=1是虚数单位。

  • XXX为离散随机变量时,φ(t)=∑k=1∞eitxkpk\varphi(t)=\sum\limits_{k=1}^{\infty}e^{itx_k}p_kφ(t)=k=1eitxkpk
  • XXX为连续随机变量时,φ(t)=∫−∞+∞eitxp(x)dx\varphi(t)=\int^{+\infty}_{-\infty}e^{itx}p(x)dxφ(t)=+eitxp(x)dx

特征函数的计算中用到复变函数,因此注意:

  • 欧拉公式:eitx=cos⁡(tx)+isin⁡(tx)e^{itx}=\cos(tx)+i\sin(tx)eitx=cos(tx)+isin(tx)
  • 复数的共轭:a+bi‾=a−bi\overline{a+bi}=a-bia+bi=abi
  • 复数的模:∣a+bi∣=a2+b2|a+bi|=\sqrt{a^2+b^2}a+bi=a2+b2

特征函数的性质

  • 性质1:∣φ(t)∣≤φ(0)=1|\varphi(t)|\le\varphi(0)=1φ(t)φ(0)=1
  • 性质2:φ(−t)=φ(t)‾\varphi(-t)=\overline{\varphi(t)}φ(t)=φ(t)
  • 性质3:φaX+b(t)=eibtφX(at)\varphi_{aX+b}(t)=e^{ibt}\varphi_{X}(at)φaX+b(t)=eibtφX(at)
  • 性质4:若XXXYYY独立,则φX+Y(t)=φX(t)φY(t)\varphi_{X+Y}(t)=\varphi_X(t)\varphi_Y(t)φX+Y(t)=φX(t)φY(t)
  • 性质5:φ(k)(0)=ikE(X)\varphi^{(k)}(0)=i^k\mathbb{E}^(X)φ(k)(0)=ikE(X)

常用分布的特征函数

  • 单点分布 P(X=a)=1P(X=a)=1P(X=a)=1,其特征函数为φ(t)=eita\varphi(t)=e^{ita}φ(t)=eita
  • 0-1分布 P(X=x)=px(1−p)1−xP(X=x)=p^x(1-p)^{1-x}P(X=x)=px(1p)1xx=0,1x=0,1x=0,1,其特征函数为φ(t)=peit+q\varphi(t)=pe^{it}+qφ(t)=peit+q,其中q=1−pq=1-pq=1p
  • 泊松分布P(λ)P(\lambda)P(λ) P(X=k)=λkk!e−λP(X=k)=\frac{\lambda^k}{k!}e^{-\lambda}P(X=k)=k!λkeλk=0,1,⋯k=0,1,\cdotsk=0,1,,其特征函φ(t)=∑k=0∞eiktλkk!e−λ=e−λ∑k=0∞(λeit)kk!e−λeiteλeit=e−λeλeit=eλ(eit−1)\begin{aligned}\varphi(t)&=\sum\limits_{k=0}^{\infty}e^{ikt}\frac{\lambda^k}{k!}e^{-\lambda}=e^{-\lambda}\sum\limits_{k=0}^{\infty}\frac{(\lambda e^{it})^k}{k!}e^{-\lambda e^{it}}e^{\lambda e^{it}}\\&=e^{-\lambda}e^{\lambda e^{it}}=e^{\lambda(e^{it}-1)}\end{aligned}φ(t)=k=0eiktk!λkeλ=eλk=0k!(λeit)keλeiteλeit=eλeλeit=eλ(eit1)
  • 均匀分布 U(a,b)U(a,b)U(a,b) 因为密度函数为p(x)={1b−a,a<x<b0,其它p(x)=\left\{\begin{array}{ll}\frac{1}{b-a},&a<x<b\\0,&其它\end{array}\right.p(x)={ba1,0,a<x<b所以其特征函数为φ(t)=∫abeitxb−adx=eibt−eiatit(b−a)\varphi(t)=\int^b_a\frac{e^{itx}}{b-a}dx=\frac{e^{ibt}-e^{iat}}{it(b-a)}φ(t)=abbaeitxdx=it(ba)eibteiat
  • 标准正态分布N(0,1)N(0,1)N(0,1) 因为密度函数为p(x)=12πe−x22,−∞<x<∞p(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, \quad -\infty<x<\inftyp(x)=2π1e2x2,<x<所以其特征函数为φ(t)=e−t22\varphi(t)=e^{-\frac{t^2}{2}}φ(t)=e2t2
  • 指数分布Exp(λ)Exp(\lambda)Exp(λ) 因为密度函数为p(x)={λe−λx,x>00,x≤0p(x)=\left\{\begin{array}{ll}\lambda e^{-\lambda x},&x > 0\\0,&x \le0\end{array}\right.p(x)={λeλx,0,x>0x0所以其特征函数表示为φ(t)=∫0∞eitxλeλxdx=(1−itλ)−1\varphi(t)=\int^{\infty}_{0}e^{itx}\lambda e^{\lambda x}dx=\left(1-\frac{it}{\lambda}\right)^{-1}φ(t)=0eitxλeλxdx=(1λit)1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值