- CVPR 2023 Interactive Segmentation of Radiance Fields(Nerf重建加上选中分割)
PSNR是峰值信噪比(Peak Signal-to-Noise Ratio)的缩写,用于衡量图像或视频的质量损失程度。PSNR的最大值是无穷大,表示图像质量完全没有损失,与原始图像完全一致;最小值为0,表示图像质量损失严重,已无法从原始图像中辨认出任何信息。因此,PSNR的数值越高,代表图像质量损失越小,对应于更好的重建质量。
PSNR的计算方式如下所示:
-
首先计算原始图像(通常用灰度图像表示)与经过处理后的图像之间的均方误差(MSE,Mean Squared Error):
[ MSE = \frac{1}{MN} \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} [I(i,j) - K(i,j)]^2 ]
其中,( M ) 和 ( N ) 分别为图像的高度和宽度,( I(i,j) ) 和 ( K(i,j) ) 分别表示原始图像和处理后的图像在位置 ( (i,j) ) 处的像素灰度值。 -
然后利用均方误差计算PSNR值:
[ PSNR = 10 \times \log_{10} \left( \frac{{\text{MAX}}^2}{{\text{MSE}}} \right) ]
其中,MAX表示像素值的最大可能取值(比如对于8位灰度图像,MAX=255)。
通过这个计算公式,可以得到处理后图像相对于原始图像的质量损失程度,PSNR值越高,表明图像质量损失越小。