【NERF】入门学习整理(二)
1. Hierarchicalsampling分层采样
粗网络coarse,均匀采样64个点
缺点:如果仅使用粗网络会存在点位浪费和欠采样的问题,比比如空气中很多无效的点
精细网络fine,基于粗网络的结果权重逆变换采样128个点,并带上之前粗网络的64个点=192个点
这个权重w是基于粗网络中输出的"密度值o",权重可以看看作为射线的分段常数概率密度函数(Piecewise-constantPDF)
2. Loss定义(其实就是简单的均方差MSE)
Loss定义(其实就是简单的均方差MSE)
3. 隐式重建与显示重建
显示重建:与点云、体素、三角网格等可以通过遍历存储空间中的所有元素来访问的显式几何不同,为了访问隐式几何,我们只能选择空间坐标作为采样点的输入(毕竟groundtrue是图片而不是三维形体)。隐式场景将输出这些点的几何密度和颜色。而神经隐式几何则是通过神经网络将上述输入和输出进行转换。通过对光线上的一系列采样点进行加权积分,就可以渲染出一个像素的颜色(在这一步就将隐式的采样点转回图片的像素点)。
隐式重建:在渲染神经辐射场(NeRF)时,首先需要通过神经网络将空间坐标作为输入来预测每个点的几何密度和颜色。这意味着神经网络将学习如何从空间坐标映射到几何属性。一旦神经网络训练完成,我们就可以使用这个模型来对光线进行采样。
在渲染过程中,我们沿着光线对场景进行采样,获取一系列采样点。对于每个采样点,我们使用神经网络输出的几何密度和颜色信息,结合光线传播的衰减效果,进行加权积分。这个过程可以理解为在三维空间中沿着光线不断前进,并根据所经过的点的属性来计算最终的颜色。
最终,通过对光线上所有采样点的加权积分,我们可以得到一个像素的颜色值。这个颜色值将被映射回图像空间中的像素点,从而实现将隐式的几何场景转换为最终的图像渲染结果。这种方法能够生成高质量且逼真的图像,同时能够处理复杂的几何形状和光照效果。