Browser-use 详细介绍 & 使用文档

Browser-use 详细介绍 & 使用文档

一、概述

Browser-use 是一个旨在将 AI “智能体”(Agents)与真实浏览器进行交互的 Python 库,可以轻松实现浏览器自动化。在配合 LLM(如 GPT 系列)使用时,浏览器-use 能够让你的智能体发起对网页的访问、操作页面元素、收集信息、执行脚本等,从而扩展 AI 应用的落地场景。

目前 Browser-use 最低需要 Python 3.11 及以上,才能正常使用其封装的 Playwright 功能。

1. 技术栈:

  • LangChain(AI Agent框架)
  • Playwright(浏览器自动化)
  • dotenv(环境变量 key)
  • 异步I/O架构

2. 流程图

用户任务
LLM 解析
Agent 决策/规划
浏览器动作
数据提取页面信息
Playwright 调用
浏览器实例
模型处理
结构化结果输出

browser-use:语言模型 -> 决策/控制 -> 浏览器执行 -> 数据回传 -> 模型后处理


二、关键特性

1. 简单的 Agent 接口

通过 Agent 类即可快速创建带浏览器交互能力的智能体,赋能 LLM 与网页之间的复杂操作。

1.1. Agent 接口参数
参数名称类型默认值说明
taskstr(必传)代理需要执行的任务描述。
llmBaseChatModel (LangChain Model)(必传)主语言模型,执行对话和工具调用。
controllerobject (Controller 实例)默认Controller自定义函数/工具调用的注册表。可参考“Custom Functions”。
use_visionboolTrue是否启用视觉能力(截图+分析)。如模型支持图像输入,可显著提高网页理解;也会产生额外 token 成本。
save_conversation_pathstr若指定,则会将对话历史保存在该路径下,用于调试或审计。
system_prompt_classtype (自定义 System Prompt 类)默认Prompt 类自定义系统提示词逻辑,参考“System Prompt”定制化说明。
browserBrowser (Browser-use 实例)重用已创建的 Browser 实例;若不提供,则 Agent 每次 run() 时会自动创建并关闭新的浏览器。
browser_contextBrowserContext (Playwright 实例)使用已有的浏览器上下文 (Context)。适合需要维护持久会话 (cookies/localStorage) 的场景。
max_stepsint100允许 Agent 执行的最大步骤数,防止死循环或无限操作。
planner_llmBaseChatModel不启用 Planner规划用语言模型,与主 LLM 分开;可用较小/便宜模型处理高层策略。
use_vision_for_plannerboolTruePlanner 是否能使用视觉功能(若主 LLM 已开启视觉,这里可独立关闭以节省资源)。
planner_intervalint1Planner 模型执行间隔。即每多少步调用一次 Planner 作重新规划。
message_contextstr额外的任务/上下文信息,辅助 LLM 更好理解或执行任务。
initial_actionslist[dict]初始化时要执行的动作列表(无需经 LLM 调用),格式为 {action_name: {…}}。
max_actions_per_stepint10每个步骤里可执行的最大动作数,用于控制 Agent 过度频繁操作。
max_failuresint3允许 Agent 失败的最大次数,超过则停止任务。
retry_delayint (秒)10当遇到限流 (rate limit) 或可重试的错误时,等待多少秒后再次尝试。
generate_gifbool 或 str (路径)False是否录制浏览器过程生成 GIF。为 True 时自动生成随机文件名;为字符串时将 GIF 存储到该路径。

2. 多语言模型支持

可轻松集成 LangChain 提供的各类 LLM(如 OpenAI、Anthropic、Cohere 等)进行高级任务管理。

模型所属/类型
GPT-4oOpenAI
ClaudeAnthropic
AzureAzure OpenAI
GeminiGoogle Generative AI
DeepSeek-V3DeepSeek
DeepSeek-R1DeepSeek
Ollama本地模型 (需安装 Ollama)

3. 基于 Playwright

默认使用 Playwright 进行浏览器的无头启动、页面操作和渲染控制;对常见网页交互场景提供友好的抽象。

4. 云端版 & 本地版

除了本地安装运行外,Browser-use 也提供托管版本,可以直接在云端执行,无需配置本地环境。

5. Gradio UI 测试

内置示例可以利用 Gradio 搭建简易的可视化界面,方便开发者快速测试并可视化浏览器自动化流程。


三、环境准备

1. Python 版本

  • 需要 Python 3.11 或更高版本。
  • 推荐在独立虚拟环境(venv)或管理工具(如 uv)中配置环境。
1.1. 推荐使用 pyenv 管理 python

Github:https://github.com/pyenv/pyenv

# pyenv 根目录
export PYENV_ROOT="$HOME/.pyenv"
export PATH="$PYENV_ROOT/bin:$PATH"

# 初始化
eval "$(pyenv init -)"

在这里插入图片描述

2. 安装方法

2.1. 安装 browser-use
pip3 install browser-use
2.2. 安装 Playwright
playwright install
  • 此操作会自动下载 Chromium 无头浏览器,用于后续的浏览器自动化。
2.3. 配置 LLM API Keys(可选)
  • 在 .env 文件中填写相应的 OPENAI_API_KEY=、ANTHROPIC_API_KEY= 等 Key。
OPENAI_API_KEY=sk-xxxxxxx
  • 如果使用其他 LLM,需要参考 LangChain 文档或对应服务提供的说明进行配置。

四、Demo 示例

1. 简单示例

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import asyncio
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from browser_use import Agent

load_dotenv()

llm = ChatOpenAI(model="gpt-4o")

async def main():
    agent = Agent(
        task="打开 https://cn.vuejs.org/guide/essentials/computed,获取页面里所有的 h2 标签文本及所有的 a 标签文本(以及它的 href)",
        llm=llm,
    )
    result = await agent.run()
    print('result:',result)

if __name__ == "__main__":
    asyncio.run(main())
1.1. 核心流程:
  1. 从 .env 中读取 OPENAI_API_KEY 等信息,初始化 ChatOpenAI。
  2. 创建一个 Agent,指定 task 即描述智能体要完成的任务。
  3. 调用 agent.run() 发起执行,包括浏览器自动化与 LLM 结合的流程。

五、常见操作

1. 修改 LLM 模型

llm = ChatOpenAI(model="gpt-3.5-turbo")

llm = ChatOpenAI(model="gpt-4o")

2. 在 .env 中设置 API Key

OPENAI_API_KEY=sk-xxxx
ANTHROPIC_API_KEY=xxxxxx

如果你还需使用其他模型(如 Cohere、HuggingFace Hub),可一并配置对应的 Key,并在 Python 脚本中初始化相应的 LLM 对象。

3. 官方文档示例

docs.browser-use.com/introduction 可以找到更多场景示例,比如如何定制 browser-use 的 Tools、配合 PythonREPLTool 扩展执行 Python 脚本等。


六、UI 测试方式

如果你想通过简单的 UI(如 Gradio)来测试 Browser-use,官方示例提供了 examples/ui/gradio_demo.py。

1. 安装 Gradio

uv pip install gradio

2. 运行示例

python examples/ui/gradio_demo.py

打开终端提示的地址,就能看到一个简易的 web 界面,在界面中输入 task 等信息测试智能体。


七、常见问题 & 解决思路

  • 报错:playwright not installed 或 executable path not found
    • 请确认已执行 playwright install chromium,且安装成功。
  • Python 版本过低
    • Browser-use 要求 Python >= 3.11,如果你使用的是 3.10 或更低版本,需要升级环境。
  • LLM 调用失败
    • 检查是否在 .env 中填写了正确的 API key,或你的 Key 是否仍在有效期内。
  • UI Demo 启动后无法访问
    • 可能是端口占用,或者 Gradio 版本过旧。尝试更新 gradio 或换一个端口。
  • 长时间卡住/超时
    • 检查网络环境,LLM 请求或浏览器加载是否耗时过长。

八、总结

Browser-use 让 AI 与浏览器的结合变得更便捷,能够快速构建出“会浏览网页、抓取信息、进行动态交互”的智能体。只需简单的配置与几行代码,就能让 LLM 自动处理网页操作,为项目带来更多可能性。

  • 使用 Python >= 3.11;
  • 安装并配置好 Playwright;
  • 在主代码中初始化 Agent 并提供 LLM;
  • 在 .env 中存放 API Keys;

九、参考

### 使用浏览器Web UI进行开发或测试 对于通过浏览器的Web用户界面(Web UI)来进行开发或测试工作,主要依赖于现代浏览器内置的强大开发者工具。这些工具提供了多种功能来帮助开发者调试网页应用、分析性能以及模拟不同设备环境。 #### 利用Chrome DevTools进行前端开发和自动化测试 Google Chrome浏览器中的DevTools是一个非常全面的选择。它允许查看页面加载过程中的网络请求详情,实时编辑HTML/CSS/JavaScript并立即看到效果变化[^1]。此外,在集成Appium框架时可以配置特定的能力参数(targeted desired capabilities),以便更好地支持Android平台上的移动应用程序测试。 为了实现更高效的UI交互测试流程,还可以借助Selenium WebDriver这样的库配合Python或其他编程语言编写脚本控制浏览器动作;而像TestNG这类单元测试框架则能自动生成易于理解的HTML格式报告文件用于展示执行结果[^2]。 下面是一段简单的Python代码片段示范怎样启动一个Firefox实例并通过命令行输入打开指定网址: ```python from selenium import webdriver from selenium.webdriver.firefox.service import Service as FirefoxService from selenium.webdriver.common.by import By service = FirefoxService(executable_path='/path/to/geckodriver') driver = webdriver.Firefox(service=service) url = "https://www.example.com" driver.get(url) ``` 此段程序会调用GeckoDriver服务创建一个新的Firefox窗口,并访问给定链接地址。之后可以根据需求进一步添加更多指令完成各种复杂的浏览任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gqkmiss

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值