力扣:100275. K 周期字符串需要的最少操作次数(Java)

文章讨论了如何通过最少的操作次数将给定字符串word转换为长度为k的周期字符串,通过使用哈希表计算不同长度为k的子串出现次数,找出最大出现次数并确定所需操作次数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:

给你一个长度为 n 的字符串 word 和一个整数 k ,其中 k 是 n 的因数。
在一次操作中,你可以选择任意两个下标 i 和 j,其中 0 <= i, j < n ,且这两个下标都可以被 k 整除,然后用从 j 开始的长度为 k 的子串替换从 i 开始的长度为 k 的子串。也就是说,将子串 word[i…i + k - 1] 替换为子串 word[j…j + k - 1] 。
返回使 word 成为 K 周期字符串 所需的 最少 操作次数。
如果存在某个长度为 k 的字符串 s,使得 word 可以表示为任意次数连接 s ,则称字符串 word 是 K 周期字符串 。例如,如果 word == “ababab”,那么 word 就是 s = “ab” 时的 2 周期字符串 。

输入:

word = "leetcodeleet", k = 4

输出:

1

解释:可以选择 i = 4 和 j = 0 获得一个 4 周期字符串。这次操作后,word 变为 “leetleetleet” 。

代码实现:

class Solution {
    public int minimumOperationsToMakeKPeriodic(String word, int k) {
        HashMap<String, Integer> hm = new HashMap<>();// 哈希表存储:长度为k的字符串出现次数
        int n = word.length();// 单词长度
        String tmp = "";// 临时数组
        for (int i = 0; i < n; i++) {
            if (i % k == 0) {// 记录长度为k的字符串的第一个字符
                tmp = "";
                tmp += word.charAt(i);
            } else {// 添加其他字符
                tmp += word.charAt(i);
            }
            if (tmp.length() == k) {// 如果达到k,哈希表计数
                hm.put(tmp, hm.getOrDefault(tmp, 0) + 1);
            }
        }
        int maxCyc = 0;// 哈希表中某个单词出现的最大次数
        Set<Map.Entry<String, Integer>> entries = hm.entrySet();// 创建哈希表的键值对单列集合
        // 遍历集合
        for (Map.Entry<String, Integer> entry : entries) {
            Integer value = entry.getValue();// 得到value值
            if (value > maxCyc) {// 打擂台:获取最大出现次数
                maxCyc = value;
            }
        }
        // 最少操作次数 = 单词中长度为k的字符串个数 - 哈希表中出现的最大单词出现次数
        return word.length() / k - maxCyc;
    }
}
### Java 实现 LeetCode 第 3 题:无重复字符的最长子串 以下是基于滑动窗口算法的 Java 解决方案,该方法通过维护一个动态窗口来高效解决问题。此解法的时间复杂度为 O(n),空间复杂度为 O(min(m, n)),其中 m 是字符串中不同字符的数量。 #### 滑动窗口原理 滑动窗口的核心思想是利用两个指针 `left` 和 `right` 来表示当前正在考察的子串范围。当发现有重复字符时,移动左边界直到不再存在重复字符为止[^1]。 ```java public class Solution { public int lengthOfLongestSubstring(String s) { if (s == null || s.length() == 0) return 0; int maxLength = 0; int left = 0; // 左边界初始位置 Map<Character, Integer> charIndexMap = new HashMap<>(); for (int right = 0; right < s.length(); right++) { // 右边界逐步扩展 char currentChar = s.charAt(right); if (charIndexMap.containsKey(currentChar) && charIndexMap.get(currentChar) >= left) { // 如果当前字符已经存在于哈希表中,则更新左边界到上一次出现的位置之后 left = charIndexMap.get(currentChar) + 1; } charIndexMap.put(currentChar, right); // 更新或记录当前字符及其索引 maxLength = Math.max(maxLength, right - left + 1); // 计算最大长度 } return maxLength; } } ``` 上述代码实现了以下逻辑: - 使用 `HashMap` 存储每个字符最近一次出现的索引。 - 当遇到重复字符时,调整左边界至之前重复字符的下一个位置。 - 动态计算并保存最大的无重复子串长度[^2]。 #### 测试案例 为了验证程序的有效性,可以运行如下测试: ```java public static void main(String[] args) { Solution sol = new Solution(); System.out.println(sol.lengthOfLongestSubstring("abcabcbb")); // 输出: 3 ["abc"] System.out.println(sol.lengthOfLongestSubstring("bbbbb")); // 输出: 1 ["b"] System.out.println(sol.lengthOfLongestSubstring("pwwkew")); // 输出: 3 ["wke"] System.out.println(sol.lengthOfLongestSubstring("")); // 输出: 0 [] System.out.println(sol.lengthOfLongestSubstring("au")); // 输出: 2 ["au"] } ``` 这些测试涵盖了多种情况,包括空字符串、全相同字符以及正常输入场景下的表现[^3]。 #### 复杂度分析 时间复杂度:O(n),因为每个字符最多被访问两次——一次由右指针遍历,另一次可能因左指针移动而重新评估。 空间复杂度:O(min(m, n)),取决于字符串中的唯一字符数量与总长度之间的较小者[^4]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JungleiRim

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值