
Communicated by Fernando Pineda

Learning Complex, Extended Sequences Using the Principle
of History Compression

Jiirgen Schmidhuber
Department of Computer Science, University of Colorado,
Campus Box 430, Boulder, CO 80309 USA

Previous neural network learning algorithms for sequence processing
are computationally expensive and perform poorly when it comes to
long time lags. This paper first introduces a simple principle for re-
ducing the descriptions of event sequences without loss of infowa-
tion. A consequence of this principle is that only unexpected inputs
can be relevant. This insight leads to the construction of neural archi-
tectures that learn to ”divide and conquer” by recursively decomposing
sequences. I describe two architectures. The first functions as a self-
organizing multilevel hierarchy of recurrent networks. The second,
involving only two recurrent networks, tries to collapse a multilevel
predictor hierarchy into a single recurrent net. Experiments show that
the system can require less computation per time step and many fewer
training sequences than conventional training algorithms for recurrent
nets.

1 Introduction

Several approaches to on-line supervised sequence learning have been
proposed, including backpropagation through time (BPTT) (e.g., Williams
and Peng 1990), the IID or RTRL algorithm (Robinson and Fallside 1987;
Williams and Zipser 19891, and the recent fast-weight algorithm (Schmid-
huber 1991 b). These approaches are computationally intensive; BPTT is
not local in time, RTRL-like algorithms are not local in space (Schmidhu-
ber 1991~). Common to all of these approaches is that they do not try to
selectively focus on refeuanf inputs; they waste efficiency and resources
by focusing on every input. With many applications, a second drawback
of these methods is the following: The longer the time lag between an
event and the occurrence of a corresponding error the less information is
carried by the corresponding backpropagated error signals. Mozer (1990)
and Rohwer (1989) have addressed the latter problem but not the former.
Ring (1991) on the other hand addresses both problems, but in a manner
much different from that presented here.

How can a system learn to focus on the relevant points in time? What
does it mean for a point in time to be relevant? How can the system learn

Neural Computation 4, 234-242 (1992) @ 1992 Massachusetts Institute of Technology

Learning Complex, Extended Sequences 235

to reduce the numbers of inputs to be considered over time without losing
information? A major contribution of this work is an adaptive method
for removing redundant information from sequences. The next section
shows that the system ought to focus on unexpected inputs and ignore
expected ones.

2 History Compression

Consider a deterministic discrete time predictor (not necessarily a neural
network) whose state at time t is described by an environmental input
vector i(t), an internal state vector h(t) , and an output vector o(t). The
environment may be nondeterministic. At time 0, the predictor starts
with i(0) and an internal start state h(0). At time t 2 0, the predictor
computes

40 = f [i (t) ? h(t)l

At time t > 0, the predictor furthermore computes

h(t) = g[i(t - l), h(t - l)]

AII information about the input at a given time tx can be reconstructed
from the knowledge about

tx, f ,g, i(0),h(O),and the pairs [t,,i(t,)] forwhich

0 < t, 5 t , and o(ts - 1) # i (t s)

This is because if o (t) = i(t + 1) at a given time t , then the predictor is
able to predict the next input from the previous ones. The new input is
derivable by means off and g.

Information about the observed input sequence can be even further
compressed beyond just the unpredicted input vectors i (ts). It suffices
to know only those elements of the vectors i(ts) that were not correctly
predicted.

This observation implies that we can discriminate one sequence from
another by knowing just the unpredicted inputs and the corresponding time
steps at which they occurred. No information is lost if we ignore the expected
inputs. We do not even have to know f and g. I call this the principle of
histo y compression.

From a theoretical point of view it is important to know at what
time an unexpected input occurs; otherwise there will be a potential for
ambiguities: Two different input sequences may lead to the same shorter
sequence of unpredicted inputs. With many practical tasks, however,
there is no need for knowing the critical time steps, as I show later.

236 Jiirgen Schmidhuber

3 A Self-organizing Multilevel Predictor Hierarchy

Using the principle of history compression we can build a self-organizing
hierarchical neural "chunking" system. The system detects causal depen-
dencies in the temporal input stream and learns to attend to unexpected
inputs instead of focusing on every input. It learns to reflect both the
relatively local and the relatively global temporal regularities contained
in the input stream.

The basic task can be formulated as a prediction task. At a given
time step the goal is to predict the next input from previous inputs. If
there are external target vectors at certain time steps then they are simply
treated as another part of the input to be predicted.

The architecture is a hierarchy of predictors, the input to each level
of the hierarchy is coming from the previous level. Pi denotes the ith
level network, which is trained to predict its own next inputfrom its previous
inputs.' We take Pi to be a conventional dynamic recurrent neural net-
work (Robinson and Fallside 1987; Williams and Zipser 1989; Williams
and Peng 1990); however, it might be some other adaptive sequence pro-
cessing device as we1L2

At each time step the input of the lowest level recurrent predictor
PO is the current external input. We create a new higher level adaptive
predictor P,+, whenever the adaptive predictor at the previous level, P,,
stops improving its predictions. When this happens the weight-changing
mechanism of P, is switched off (to exclude potential instabilities caused
by ongoing modifications of the lower level predictors). If at a given
time step P, (s 2 0) fails to predict its next input (or if we are at the be-
ginning of a training sequence that usually is not predictable either) then
Psfl will receive as input the concatenation of this next input of P, plus a
unique representation of the corresponding time step;3 the activations of P,+I'S
hidden and output units will be updated. Otherwise P,+l will not per-
form an activation update. This procedure ensures that Ps+l is fed with
an unambiguous reduced description4 of the input sequence observed by
P,. This is theoretically justified by the principle of history compression.

In general, P,+1 will receive fewer inputs over time than P,. With
existing learning algorithms, the higher level predictor should have less

'Recently I became aware that Don Mathis had some related ideas (personal com-
munication). A hierarchical approach to sequence generation was pursued by Miyata
(1988). See Ring (1991) for an alternative method of building "chunking" hierarchies.

2For instance, we might employ the more limited feedforward networks and a "time
window" approach. In this case, the number of previous inputs to be considered as a
basis for the next prediction will remain fixed.

3A unique time representation is theoretically necessary to provide Ps+l with unam-
biguous information about when the failure occurred (see also the last paragraph of
Section 2). A unique representation of the time that went by since the last unpredicted
input occurred will do as well.

41n contrast, the reduced descriptions referred to by Mozer (1990) are not
unambiguous.

Learning Complex, Extended Sequences 237

difficulties in learning to predict the critical inputs than the lower level
predictor. This is because P,+l’s “credit assignment paths” will often be
short compared to those of P,. This will happen if the incoming inputs
carry global temporal structure that has not yet been discovered by P,.

This method is a simplification and an improvement of the recent
chunking method described by Schmidhuber (1991a).

Often a multilevel predictor hierarchy will be the fastest way of learn-
ing to deal with sequences with multilevel temporal structure (e.g.,
speech). Experiments have shown that multilevel predictors can quickly
learn tasks that are practically unlearnable by conventional recurrent net-
works (e.g., Hochreiter 1991). One disadvantage of a predictor hierarchy,
however, is that it is not known in advance how many levels will be
needed. Another disadvantage is that levels are explicitly separated from
each other. It can be possible, however, to collapse the hierarchy into a
single network as described next.

4 Collapsing the Hierarchy into a Single Recurrent Net

4.1 Outline. I now describe an architecture consisting of two con-
ventional recurrent networks: The automatizer A and the chunker C . At
each time step A receives the current external input. A’s error function is
3-fold: One term forces it to emit certain desired target outputs at certain
times. If there is a target, then it becomes part of the next input. The
second term forces A at every time step to predict its own next nontarget
input. The third (crucial) term will be explained below.

If and only if A makes an error concerning the first and second term of
its error function, the unpredicted input (including a potentially available
teaching vector) along with a unique representation of the current time step will
become the new input to C . Before this new input can be processed, C
(whose last input may have occurred many time steps earlier) is trained
to predict this higher level input from its current internal state and its last
input (employing a conventional recurrent net algorithm). After this, C
performs an activation update that contributes to a higher level internal
representation of the input history. Note that according to the principle
of history compression C is fed with an unambiguous reduced description of
the input history. The information deducable by means of A’s predictions
can be considered as redundant. (The beginning of an episode usually is
not predictable, therefore it has to be fed to the chunking level, too.)

Since C‘s “credit assignment paths” will often be short compared to
those of A, C will often be able to develop useful internal representations
of previous unexpected input events. Due to the final term of its error
function, A will be forced to reproduce these internal representations,
by predicting C’s state. Therefore A will be able to create useful internal
representations by itself in an early stage of processing a given sequence;
it will often receive meaningful error signals long before errors of the first

238 Jurgen Schmidhuber

or second kind occur. These internal representations in turn must carry
the discriminating information for enabling A to improve its low-level
predictions. Therefore the chunker will receive fewer and fewer inputs,
since more and more inputs become predictable by the automatizer. This
is the collapsing operation. Ideally, the chunker will become obsolete after
some time.

It must be emphasized that unlike the incremental creation of a mul-
tilevel predictor hierarchy described in Section 3 there is no formal proof
that the 2-net on-line version is free of instabilities. For instance, one can
imagine situations where A unlearns previously learned predictions be-
cause of the third term of its error function. Relative weighting of the
different terms in A's error function represents an ad hoc remedy for this
potential problem. In the experiments (presented in Section 5) relative
weighting was not necessary.

4.2 Details of the 2-Net Chunking Architecture. The system de-
scribed below is the on-line version of a representative of a number of
variations of the basic principle described in Section 4.1. See Schmidhu-
ber (1991~) for various modifications.

Table 1 gives an overview of various time-dependent activation vec-
tors relevant for the description of the algorithm. Additional nofation: "0"

is the concatenation operator; & (t) = 1 if the teacher provides a target
vector d (f) at time t and b d (t) = 0 otherwise. If &(t) = 0 then d(f) takes
on some default value, for example, the zero vector.

A has nI + nD input units, nHA hidden units, and no* output units (see
Table 1). With pure prediction tasks nD = 0. C has nHc hidden units,
and noc output units. All of A's input and hidden units have directed
connections to all of A's hidden and output units. All input units of A
have directed connections to all hidden and output units of C. This is
because A's input units seme as input units for C at certain time steps. There
are additional ntime input units for C for providing unique representations
of the current time step. These additional input units also have directed
connections to all hidden and output units of C. All hidden units of C
have directed connections to all hidden and output units of C.

A will try to make d A (t) equal to d (t) if &(t) = 1, and it will try to
make pA(t) equal to x (t) , thus trying to predict x (t) . Here again the tar-
get prediction problem is defined as a special case of an input prediction
problem. C will try to make dc(t) equal to the externally provided teach-
ing vector d(t) if &(t) = 1 and if A failed to emit d(t) . Furthermore, it
will always try to make pc(t) o sc(t) equal to the next nonteaching input
to be processed by C. This input may be many time steps ahead. Finally,
and most importantly, A will try to make qA(t) equal to hc(t) o oc(t), thus
trying to predict the state of C. The activations of C's output units are
considered as part of its state.

Both C and A simultaneously are trained by a conventional algorithm
for recurrent networks in an on-line fashion. Both the IID algorithm

Learning Complex, Extended Sequences 239

Table 1:
Vectors."

Definitions of Symbols Representing Time-Dependent Activation

Vector Description (referring to time t) Dimension
4 t) "Normal" environmental input nI
d (t) Teacher-defined target n D

d A (t) A's prediction of d (t) nD
PA (t) A's prediction of x(t) n1

d C (t) C's prediction of C's next nD

p c (t) C's prediction of C's next nI

i A (t) = x (t) o d(t) A's input 111 + nD

h A (t) A's hidden activations n H ~

time(t) Unique representation of t %me

k (t) C's hidden activations nHc

target input

"normal" input

"time" input
S C (t) C's prediction of C's next ntime

O C (t) dc(t) opc(t1 o s c (t)
9 A (t) A's prediction of hc(t) o o c (t) nHc + no,

no, = HD + nI + ntime

OA(t) d A (t) PA(t) q A (t) noA = nD + nI + nHc

+not
0" I, .
0 is the concatenation operator. h ~ (t) and o A (t) are based on previous inputs and

are computed without knowledge about d (t) and x (t) .

and BPTT are appropriate. In particular, computationally inexpensive
variants of BPTT (Williams and Peng 1990) are interesting: There are
tasks with hierarchical temporal structure where only a few iterations of
"backpropagation back into time" per time step are in principle sufficient
to bridge arbitrary time lags (see Section 5).

I now describe the (quite familiar) procedure for updating activations
in a net.

Repeat for a constant number of iterations (typically one or two):

1. For each noninput unit j of N compute c l j = fi(ciaiwij), where aj
is the current activation of unit j , f i is a semilinear differentiable
function, and wil is the weight on the directed connection from unit
i to unit j .

2. For all noninput units j : set aj equal to u,.

I now specify the input-output behavior of the chunker and the autom-
atizer as well as the details of error injection.

Initialization: All weights are initialized randomly. In the beginning,
at time step 0, make hc(0) and h ~ (0) equal to zero, and make iA (0) equal
d(0) o x (0) . Represent time step 0 in time(0). Update C to obtain hc(1)
and oc(1).

240 Jiirgen Schmidhuber

For all times t > 0 until interruption do:

1. Update A to obtain hA(f) and oA(t). A's error eA(t) is defined as

2eA(f) = (PA(t) qA(t) - x (t) k(t) o C (t) l T

X [P A (f) qA(t) - x (t) h C (t) oC(t)]
f6d(t)[dA(t) - d(t)lT[dA(t) - d(t) l

Use a gradient descent algorithm for dynamic recurrent nets to
change each weight w,, of A in proportion to (the approximation
of) -i3eA(t)/i3wij. Set iA(t) to d(t) o x (t) . Uniquely represent t in
time(t) .

2. If A's low-level error

2eP(t) = [pA(t) - X (f) l T b A (t) - x(t)1
f h d (f) [d A (t) - d(t)lT[dA(t) - d(t)l

is less or equal to a small constant B 2 0, then set hc(t + 1) = Iic(t),
oc(t + 1) = oc(t) .

Else define C's prediction error ec(t) as

2eC(t) [pC(t) - x(t)l'bC(t) - X(t)l + bd(t)[dC(t) - d(f)lT
x[dc (t) - d(t)] + [sc(t) - time(t)IT[sc(t) - time(t)]

use a gradient descent algorithm for dynamic recurrent nets to
change each weight w,j of C in proportion to (the approximation
of) -dec(t)/awij, and update C to obtain hcit + 1) and oc(t + 1).

5 An Experiment

Josef Hochreiter (a student at TUM) tested a chunking system against a
conventional recurrent net algorithm. See Hochreiter (1991) and Schmid-
huber (1991~) for details. A prediction task with a 20-step time lag was
constructed. There were 22 possible input symbols a , x , bl, b2,. . . , b20. The
learning systems observed one input symbol at a time. There were only
two possible input sequences: abl , . . . , bZ0 and xbl, . . . , b20. These were
presented to the learning systems in random order. At a given time step,
one goal was to predict the next input (note that in general it was not
possible to predict the first symbol of each sequence due to the random
occurrence of x and a). The second (and more difficult) goal was to make
the activation of a particular output unit (the "target unit") equal to 1
whenever the last 21 processed input symbols were a , bl , . , . , b20 and to
make this activation 0 whenever the last 21 processed input symbols were
x, bl , . . . , b20. No episode boundaries were used: Input sequences were
fed to the learning systems without providing information about their
beginnings and their ends. Therefore there was a continuous stream of
input events.

Learning Complex, Extended Sequences 241

With the conventional algorithm, with various learning rates, and
with more than 1,000,000 training sequences it was not possible to obtain
a significant performance improvement concerning the target unit. A similar
task involving time lags of as few as 5 steps required many hundreds of
thousands of training sequences.

But, a chunking system was able to solve the 20-step task rather
quickly, using an efficient approximation of the BPTT method where er-
ror was propagated a maximum of 3 steps into the past (although there
was a 20 step time lag!). No unique representations of time steps were
necessary for this task. Out of 17 test runs 13 required fewer than 5000
training sequences. The remaining test runs required fewer than 35,000
training sequences.

Typically, A quickly learned to predict the "easy" symbols b2, . . . , b20.
This led to a greatly reduced input sequence for C, which now did not
have many problems in learning to predict the target values at the end of
the sequences. After a while A was able to mimic C's internal representa-
tions, which in turn allowed it to learn correct target predictions by itself.
A's final weight matrix often looked like one that one would hope to get
from the conventional algorithm: There were hidden units that learned
to bridge the 20-step time lags by means of strong self-connections. The
chunking system needed less computation per time step than the con-
ventional method. Still it required many fewer training sequences.

6 Concluding Remarks

It seems that people tend to memorize and focus on atypical or unex-
pected events and that they often try to explain new atypical events in
terms of previous atypical events. In light of the principle of history
compression this makes a lot of sense.

Once events become expected, they tend to become "subconscious."
There is an obvious analogy to the chunking algorithm: The chunker's
attention is removed from events that become expected; they become
"subconscious" (automatized) and give rise to even higher level "ab-
stractions" of the chunker's " c o ~ s c ~ ~ u s ~ ~ s s . " ~

The chunking systems described in Schmidhuber (1991a,c) and the
current paper try to detect temporal regularities and learn to use them
for identifying relevant points in time. A general criticism of more con-
ventional algorithms can be formulated as follows: These algorithms do
not try to selectively focus on relevant inputs, they waste efficiency and
resources by focusing on every input.

Speech is a good example of a domain involving multilevel temporal
structure. Ongoing research will explore the application of chunking
systems to speech recognition.

5This distinction between attended and automized events can also be found in the
systems of Myers (1990) and of Ring (1991).

242 Jiirgen Schmidhuber

The principle of history compression is not limited to neural networks.
Any adaptive sequence processing device could make use of it.

Acknowledgments

Thanks to Josef Hochreiter for conducting the experiments. Thanks to
Mike Mozer for useful comments on a n earlier draft of this paper.

This research was supported by NSF PYI award IRI-9058450, grant 90-
21 from the James S. McDonnell Foundation, and DEC external research
grant 1250 to Michael C. Mozer.

References

Hochreiter, J. 1991. Diploma thesis. Institut fur Informatik, Technische Univer-
sitat Miinchen.

Miyata, Y. 1988. An unsupervised PDP learning model for action planning.
In Proceedings of the Tenth Annual Conference of the Cognitive Science Society,
pp. 223-229. Erlbaum, Hillsdale, NJ.

Mozer, M. C. 1990. Connectionist music composition based on melodic, stylistic, and
psychophysical constraints. Tech. Rep. CU-CS-495-90, University of Colorado
at Boulder.

Myers, C. 1990. Learning with delayed reinforcement through attention-driven buffer-
ing. Tech. Rep., Imperial College of Science, Technology and Medicine.

Ring, M. 1991. Incremental development of complex behaviors through auto-
matic construction of sensory-motor hierarchies. In Machine Learning: Pro-
ceedings of the Eighth Znternational Workshop (ML91), L. Birnbaum and G. Collins,
eds., pp. 343-347. Morgan Kaufmann.

Robinson, A. J., and Fallside, F. 1987. The utility driven dynamic error propagation
network. Tech. Rep. CUED/F-INFENG/TR.l, Cambridge University Engi-
neering Department.

Rohwer, R. 1989. The 'moving targets' training method. In Proceedings of 'Dis-
tributed Adaptive Neural Information Processing', St. Augustin, 24.-25.5, J. Kin-
dermann and A. Linden, eds. Oldenbourg.

Schmidhuber, J. H. 1991a. Adaptive decomposition of time. In Artificial Neural
Networks, T. Kohonen, K. Makisara, 0. Simula, and J. Kangas, eds., pp. 909-
914. Elsevier Science Publishers B.V., Amsterdam.

Schmidhuber, J. H. 1991b. Learning to control fast-weight memories: An alternative
to recurrent nets. Tech. Rep. FKI-147-91, Institut fur Informatik, Technische
Universitat Munchen.

Schmidhuber, J. H. 1991~. Neural sequence chunkers. Tech. Rep. FKI-148-91, Insti-
tut fur Informatik, Technische Universitat Miinchen.

Williams, R. J., and Peng, J. 1990. An efficient gradient-based algorithm for
on-line training of recurrent network trajectories. Neural Comp. 4, 491-501.

Williams, R. J., and Zipser, D. 1989. Experimental analysis of the real-time
recurrent learning algorithm. Connect. Sci. 1(1), 87-111.

Received 16 May 1991; accepted 20 September 1991.

http://www.mitpressjournals.org/action/showLinks?crossref=10.1080%2F09540098908915631

This article has been cited by:

1. P. Szymczyk, M. Szymczyk. 2015. Classification of geological structure using
ground penetrating radar and Laplace transform artificial neural networks.
Neurocomputing 148, 354-362. [CrossRef]

2. Jürgen Schmidhuber. 2015. Deep learning in neural networks: An overview.
Neural Networks 61, 85-117. [CrossRef]

3. Thomas Nowotny. 2014. Two Challenges of Correct Validation in Pattern
Recognition. Frontiers in Robotics and AI 1. . [CrossRef]

4. Tsvi Achler. 2014. Symbolic neural networks for cognitive capacities. Biologically
Inspired Cognitive Architectures 9, 71-81. [CrossRef]

5. Markus Hagenbuchner, Dylan P. Cliff, Stewart G. Trost, Nguyen Van Tuc,
Gregory E. Peoples. 2014. Prediction of activity type in preschool children using
machine learning techniques. Journal of Science and Medicine in Sport . [CrossRef]

6. Mikhail Prokopenko. 2014. Grand Challenges for Computational Intelligence.
Frontiers in Robotics and AI 1. . [CrossRef]

7. Branko Šter. 2013. Selective Recurrent Neural Network. Neural Processing Letters
38, 1-15. [CrossRef]

8. Martin Wöllmer, Felix Weninger, Jürgen Geiger, Björn Schuller, Gerhard Rigoll.
2013. Noise robust ASR in reverberated multisource environments applying
convolutive NMF and Long Short-Term Memory. Computer Speech & Language
27, 780-797. [CrossRef]

9. Tsvi Achler. 2013. Neural networks that perform recognition using generative
error may help fill the “Neuro-Symbolic Gap”. Biologically Inspired Cognitive
Architectures 3, 6-12. [CrossRef]

10. Varun Raj Kompella, Matthew Luciw, Jürgen Schmidhuber. 2012. Incremental
Slow Feature Analysis: Adaptive Low-Complexity Slow Feature Updating
from High-Dimensional Input Streams. Neural Computation 24:11, 2994-3024.
[Abstract] [Full Text] [PDF] [PDF Plus]

11. Martin Wöllmer, Erik Marchi, Stefano Squartini, Björn Schuller. 2011. Multi-
stream LSTM-HMM decoding and histogram equalization for noise robust
keyword spotting. Cognitive Neurodynamics . [CrossRef]

12. Jürgen Schmidhuber. 2010. Formal Theory of Creativity, Fun, and Intrinsic
Motivation (1990–2010). IEEE Transactions on Autonomous Mental Development
2, 230-247. [CrossRef]

13. Martin Wöllmer, Florian Eyben, Alex Graves, Björn Schuller, Gerhard Rigoll.
2010. Bidirectional LSTM Networks for Context-Sensitive Keyword Detection
in a Cognitive Virtual Agent Framework. Cognitive Computation 2, 180-190.
[CrossRef]

14. Florian Eyben, Martin Wöllmer, Alex Graves, Björn Schuller, Ellen Douglas-
Cowie, Roddy Cowie. 2010. On-line emotion recognition in a 3-D activation-

http://dx.doi.org/10.1016/j.neucom.2014.06.025
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.3389/frobt.2014.00005
http://dx.doi.org/10.1016/j.bica.2014.07.001
http://dx.doi.org/10.1016/j.jsams.2014.06.003
http://dx.doi.org/10.3389/frobt.2014.00002
http://dx.doi.org/10.1007/s11063-012-9259-4
http://dx.doi.org/10.1016/j.csl.2012.05.002
http://dx.doi.org/10.1016/j.bica.2012.10.001
http://dx.doi.org/10.1162/NECO_a_00344
http://www.mitpressjournals.org/doi/full/10.1162/NECO_a_00344
http://www.mitpressjournals.org/doi/pdf/10.1162/NECO_a_00344
http://www.mitpressjournals.org/doi/pdfplus/10.1162/NECO_a_00344
http://dx.doi.org/10.1007/s11571-011-9166-9
http://dx.doi.org/10.1109/TAMD.2010.2056368
http://dx.doi.org/10.1007/s12559-010-9041-8

valence-time continuum using acoustic and linguistic cues. Journal on
Multimodal User Interfaces 3, 7-19. [CrossRef]

15. Jinmiao Chen, N.S. Chaudhari. 2009. Segmented-Memory Recurrent Neural
Networks. IEEE Transactions on Neural Networks 20, 1267-1280. [CrossRef]

16. Jürgen Schmidhuber. 2006. Developmental robotics, optimal artificial curiosity,
creativity, music, and the fine arts. Connection Science 18, 173-187. [CrossRef]

17. Henrik Jacobsson. 2005. Rule Extraction from Recurrent Neural Networks:
ATaxonomy and Review. Neural Computation 17:6, 1223-1263. [Abstract]
[PDF] [PDF Plus]

18. Guilherme de A. Barreto, Aluizio F. R. Araújo, Stefan C. Kremer. 2003.
A Taxonomy for Spatiotemporal Connectionist Networks Revisited: The
Unsupervised Case. Neural Computation 15:6, 1255-1320. [Abstract] [PDF]
[PDF Plus]

19. Ben Choi. 2003. Inductive Inference by Using Information
Compression. Computational Intelligence 19:10.1111/coin.2003.19.issue-2,
164-185. [CrossRef]

20. F.A. Gers, E. Schmidhuber. 2001. LSTM recurrent networks learn simple
context-free and context-sensitive languages. IEEE Transactions on Neural
Networks 12, 1333-1340. [CrossRef]

21. R. Sun, C. Sessions. 2000. Self-segmentation of sequences: automatic formation
of hierarchies of sequential behaviors. IEEE Transactions on Systems, Man and
Cybernetics, Part B (Cybernetics) 30, 403-418. [CrossRef]

22. Tsungnan Lin, Bill Horne, Peter Tino, C Lee GilesLearning Long-Term
Dependencies in NARX Recurrent Neural Networks . [CrossRef]

23. J Tani. 1999. Learning to perceive the world as articulated: an approach for
hierarchical learning in sensory-motor systems. Neural Networks 12, 1131-1141.
[CrossRef]

24. P. Campolucci, A. Uncini, F. Piazza, B.D. Rao. 1999. On-line learning algorithms
for locally recurrent neural networks. IEEE Transactions on Neural Networks 10,
253-271. [CrossRef]

25. Monica Bianchini, Paolo Frasconi, Marco Gori, Marco MagginiOptimal learning
in artificial neural networks: A theoretical view 1-51. [CrossRef]

26. Sepp Hochreiter, Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9:8, 1735-1780. [Abstract] [PDF] [PDF Plus]

27. Jürgen Schmidhuber. 1997. Discovering Neural Nets with Low Kolmogorov
Complexity and High Generalization Capability. Neural Networks 10, 857-873.
[CrossRef]

28. Tsungnan Lin, B.G. Horne, P. Tino, C.L. Giles. 1996. Learning long-term
dependencies in NARX recurrent neural networks. IEEE Transactions on Neural
Networks 7, 1329-1338. [CrossRef]

http://dx.doi.org/10.1007/s12193-009-0032-6
http://dx.doi.org/10.1109/TNN.2009.2022980
http://dx.doi.org/10.1080/09540090600768658
http://dx.doi.org/10.1162/0899766053630350
http://www.mitpressjournals.org/doi/pdf/10.1162/0899766053630350
http://www.mitpressjournals.org/doi/pdfplus/10.1162/0899766053630350
http://dx.doi.org/10.1162/089976603321780281
http://www.mitpressjournals.org/doi/pdf/10.1162/089976603321780281
http://www.mitpressjournals.org/doi/pdfplus/10.1162/089976603321780281
http://dx.doi.org/10.1111/1467-8640.00218
http://dx.doi.org/10.1109/72.963769
http://dx.doi.org/10.1109/3477.846230
http://dx.doi.org/10.1201/9781420049176.ch6
http://dx.doi.org/10.1016/S0893-6080(99)00060-X
http://dx.doi.org/10.1109/72.750549
http://dx.doi.org/10.1016/S1874-5946(98)80037-0
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.mitpressjournals.org/doi/pdf/10.1162/neco.1997.9.8.1735
http://www.mitpressjournals.org/doi/pdfplus/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/S0893-6080(96)00127-X
http://dx.doi.org/10.1109/72.548162

29. J. Schmidhuber, S. Heil. 1996. Sequential neural text compression. IEEE
Transactions on Neural Networks 7, 142-146. [CrossRef]

30. Jürgen Schmidhuber. 1992. Learning Factorial Codes by Predictability
Minimization. Neural Computation 4:6, 863-879. [Abstract] [PDF] [PDF Plus]

31. Satinder P. SinghScaling Reinforcement Learning Algorithms by Learning
Variable Temporal Resolution Models 406-415. [CrossRef]

http://dx.doi.org/10.1109/72.478398
http://dx.doi.org/10.1162/neco.1992.4.6.863
http://www.mitpressjournals.org/doi/pdf/10.1162/neco.1992.4.6.863
http://www.mitpressjournals.org/doi/pdfplus/10.1162/neco.1992.4.6.863
http://dx.doi.org/10.1016/B978-1-55860-247-2.50058-9

	Cit p_12:1:

