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Previous neural network learning algorithms for sequence processing 
are computationally expensive and perform poorly when it comes to 
long time lags. This paper first introduces a simple principle for re- 
ducing the descriptions of event sequences without loss of infowa- 
tion. A consequence of this principle is that only unexpected inputs 
can be relevant. This insight leads to the construction of neural archi- 
tectures that learn to ”divide and conquer” by recursively decomposing 
sequences. I describe two architectures. The first functions as a self- 
organizing multilevel hierarchy of recurrent networks. The second, 
involving only two recurrent networks, tries to collapse a multilevel 
predictor hierarchy into a single recurrent net. Experiments show that 
the system can require less computation per time step and many fewer 
training sequences than conventional training algorithms for recurrent 
nets. 

1 Introduction 

Several approaches to on-line supervised sequence learning have been 
proposed, including backpropagation through time (BPTT) (e.g., Williams 
and Peng 1990), the IID or RTRL algorithm (Robinson and Fallside 1987; 
Williams and Zipser 19891, and the recent fast-weight algorithm (Schmid- 
huber 1991 b). These approaches are computationally intensive; BPTT is 
not local in time, RTRL-like algorithms are not local in space (Schmidhu- 
ber 1991~). Common to all of these approaches is that they do not try to 
selectively focus on refeuanf inputs; they waste efficiency and resources 
by focusing on every input. With many applications, a second drawback 
of these methods is the following: The longer the time lag between an 
event and the occurrence of a corresponding error the less information is 
carried by the corresponding backpropagated error signals. Mozer (1990) 
and Rohwer (1989) have addressed the latter problem but not the former. 
Ring (1991) on the other hand addresses both problems, but in a manner 
much different from that presented here. 

How can a system learn to focus on the relevant points in time? What 
does it mean for a point in time to be relevant? How can the system learn 
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to reduce the numbers of inputs to be considered over time without losing 
information? A major contribution of this work is an adaptive method 
for removing redundant information from sequences. The next section 
shows that the system ought to focus on unexpected inputs and ignore 
expected ones. 

2 History Compression 

Consider a deterministic discrete time predictor (not necessarily a neural 
network) whose state at time t is described by an environmental input 
vector i(t), an internal state vector h(t) ,  and an output vector o(t). The 
environment may be nondeterministic. At time 0, the predictor starts 
with i(0) and an internal start state h(0).  At time t 2 0, the predictor 
computes 

40 = f [ i ( t ) ?  h(t)l 

At time t > 0, the predictor furthermore computes 

h( t )  = g[i(t  - l), h(t  - l)] 

AII information about the input at a given time tx can be reconstructed 
from the knowledge about 

tx, f ,g, i(0),h(O),and the pairs [t,,i(t,)] forwhich 

0 < t, 5 t ,  and o(ts - 1) # i ( t s )  

This is because if o ( t )  = i( t  + 1) at a given time t ,  then the predictor is 
able to predict the next input from the previous ones. The new input is 
derivable by means off and g. 

Information about the observed input sequence can be even further 
compressed beyond just the unpredicted input vectors i ( ts).  It suffices 
to know only those elements of the vectors i(ts) that were not correctly 
predicted. 

This observation implies that we can discriminate one sequence from 
another by knowing just the unpredicted inputs and the corresponding time 
steps at which they occurred. No information is lost if we ignore the expected 
inputs. We do not even have to know f and g. I call this the principle of 
histo y compression. 

From a theoretical point of view it is important to know at what 
time an unexpected input occurs; otherwise there will be a potential for 
ambiguities: Two different input sequences may lead to the same shorter 
sequence of unpredicted inputs. With many practical tasks, however, 
there is no need for knowing the critical time steps, as I show later. 
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3 A Self-organizing Multilevel Predictor Hierarchy 

Using the principle of history compression we can build a self-organizing 
hierarchical neural "chunking" system. The system detects causal depen- 
dencies in the temporal input stream and learns to attend to unexpected 
inputs instead of focusing on every input. It learns to reflect both the 
relatively local and the relatively global temporal regularities contained 
in the input stream. 

The basic task can be formulated as a prediction task. At a given 
time step the goal is to predict the next input from previous inputs. If 
there are external target vectors at certain time steps then they are simply 
treated as another part of the input to be predicted. 

The architecture is a hierarchy of predictors, the input to each level 
of the hierarchy is coming from the previous level. Pi denotes the ith 
level network, which is trained to predict its own next inputfrom its previous 
inputs.' We take Pi to be a conventional dynamic recurrent neural net- 
work (Robinson and Fallside 1987; Williams and Zipser 1989; Williams 
and Peng 1990); however, it might be some other adaptive sequence pro- 
cessing device as we1L2 

At each time step the input of the lowest level recurrent predictor 
PO is the current external input. We create a new higher level adaptive 
predictor P,+, whenever the adaptive predictor at the previous level, P,, 
stops improving its predictions. When this happens the weight-changing 
mechanism of P, is switched off (to exclude potential instabilities caused 
by ongoing modifications of the lower level predictors). If at a given 
time step P, (s 2 0) fails to predict its next input (or if we are at the be- 
ginning of a training sequence that usually is not predictable either) then 
Psfl will receive as input the concatenation of this next input of P, plus a 
unique representation of the corresponding time step;3 the activations of P,+I'S 
hidden and output units will be updated. Otherwise P,+l will not per- 
form an activation update. This procedure ensures that Ps+l is fed with 
an unambiguous reduced description4 of the input sequence observed by 
P,. This is theoretically justified by the principle of history compression. 

In general, P,+1 will receive fewer inputs over time than P,. With 
existing learning algorithms, the higher level predictor should have less 

'Recently I became aware that Don Mathis had some related ideas (personal com- 
munication). A hierarchical approach to sequence generation was pursued by Miyata 
(1988). See Ring (1991) for an alternative method of building "chunking" hierarchies. 

2For instance, we might employ the more limited feedforward networks and a "time 
window" approach. In this case, the number of previous inputs to be considered as a 
basis for the next prediction will remain fixed. 

3A unique time representation is theoretically necessary to provide Ps+l with unam- 
biguous information about when the failure occurred (see also the last paragraph of 
Section 2). A unique representation of the time that went by since the last unpredicted 
input occurred will do as well. 

41n contrast, the reduced descriptions referred to by Mozer (1990) are not 
unambiguous. 
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difficulties in learning to predict the critical inputs than the lower level 
predictor. This is because P,+l’s “credit assignment paths” will often be 
short compared to those of P,. This will happen if the incoming inputs 
carry global temporal structure that has not yet been discovered by P,. 

This method is a simplification and an improvement of the recent 
chunking method described by Schmidhuber (1991a). 

Often a multilevel predictor hierarchy will be the fastest way of learn- 
ing to deal with sequences with multilevel temporal structure (e.g., 
speech). Experiments have shown that multilevel predictors can quickly 
learn tasks that are practically unlearnable by conventional recurrent net- 
works (e.g., Hochreiter 1991). One disadvantage of a predictor hierarchy, 
however, is that it is not known in advance how many levels will be 
needed. Another disadvantage is that levels are explicitly separated from 
each other. It can be possible, however, to collapse the hierarchy into a 
single network as described next. 

4 Collapsing the Hierarchy into a Single Recurrent Net 

4.1 Outline. I now describe an architecture consisting of two con- 
ventional recurrent networks: The automatizer A and the chunker C .  At 
each time step A receives the current external input. A’s error function is 
3-fold: One term forces it to emit certain desired target outputs at certain 
times. If there is a target, then it becomes part of the next input. The 
second term forces A at every time step to predict its own next nontarget 
input. The third (crucial) term will be explained below. 

If and only if A makes an error concerning the first and second term of 
its error function, the unpredicted input (including a potentially available 
teaching vector) along with a unique representation of the current time step will 
become the new input to C .  Before this new input can be processed, C 
(whose last input may have occurred many time steps earlier) is trained 
to predict this higher level input from its current internal state and its last 
input (employing a conventional recurrent net algorithm). After this, C 
performs an activation update that contributes to a higher level internal 
representation of the input history. Note that according to the principle 
of history compression C is fed with an unambiguous reduced description of 
the input history. The information deducable by means of A’s predictions 
can be considered as redundant. (The beginning of an episode usually is 
not predictable, therefore it has to be fed to the chunking level, too.) 

Since C‘s “credit assignment paths” will often be short compared to 
those of A, C will often be able to develop useful internal representations 
of previous unexpected input events. Due to the final term of its error 
function, A will be forced to reproduce these internal representations, 
by predicting C’s state. Therefore A will be able to create useful internal 
representations by itself in an early stage of processing a given sequence; 
it will often receive meaningful error signals long before errors of the first 
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or second kind occur. These internal representations in turn must carry 
the discriminating information for enabling A to improve its low-level 
predictions. Therefore the chunker will receive fewer and fewer inputs, 
since more and more inputs become predictable by the automatizer. This 
is the collapsing operation. Ideally, the chunker will become obsolete after 
some time. 

It must be emphasized that unlike the incremental creation of a mul- 
tilevel predictor hierarchy described in Section 3 there is no formal proof 
that the 2-net on-line version is free of instabilities. For instance, one can 
imagine situations where A unlearns previously learned predictions be- 
cause of the third term of its error function. Relative weighting of the 
different terms in A's error function represents an ad hoc remedy for this 
potential problem. In the experiments (presented in Section 5 )  relative 
weighting was not necessary. 

4.2 Details of the 2-Net Chunking Architecture. The system de- 
scribed below is the on-line version of a representative of a number of 
variations of the basic principle described in Section 4.1. See Schmidhu- 
ber (1991~) for various modifications. 

Table 1 gives an overview of various time-dependent activation vec- 
tors relevant for the description of the algorithm. Additional nofation: "0" 

is the concatenation operator; & ( t )  = 1 if the teacher provides a target 
vector d ( f )  at time t and b d ( t )  = 0 otherwise. If &(t)  = 0 then d( f )  takes 
on some default value, for example, the zero vector. 

A has nI + nD input units, nHA hidden units, and no* output units (see 
Table 1). With pure prediction tasks nD = 0. C has nHc hidden units, 
and noc output units. All of A's input and hidden units have directed 
connections to all of A's hidden and output units. All input units of A 
have directed connections to all hidden and output units of C. This is 
because A's input units seme as input units for C at certain time steps. There 
are additional ntime input units for C for providing unique representations 
of the current time step. These additional input units also have directed 
connections to all hidden and output units of C. All hidden units of C 
have directed connections to all hidden and output units of C. 

A will try to make d A ( t )  equal to d ( t )  if &(t )  = 1, and it will try to 
make pA(t)  equal to x ( t ) ,  thus trying to predict x ( t ) .  Here again the tar- 
get prediction problem is defined as a special case of an input prediction 
problem. C will try to make dc(t) equal to the externally provided teach- 
ing vector d(t) if &(t )  = 1 and if A failed to emit d( t ) .  Furthermore, it 
will always try to make pc( t )  o sc(t) equal to the next nonteaching input 
to be processed by C. This input may be many time steps ahead. Finally, 
and most importantly, A will try to make qA(t) equal to hc(t) o oc(t), thus 
trying to predict the state of C. The activations of C's output units are 
considered as part of its state. 

Both C and A simultaneously are trained by a conventional algorithm 
for recurrent networks in an on-line fashion. Both the IID algorithm 
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Table 1: 
Vectors." 

Definitions of Symbols Representing Time-Dependent Activation 

Vector Description (referring to time t )  Dimension 
4 t )  "Normal" environmental input nI 
d ( t )  Teacher-defined target n D  

d A ( t )  A's prediction of d ( t )  nD 
PA ( t )  A's prediction of x(t) n1 

d C ( t )  C's prediction of C's next nD 

p c ( t )  C's prediction of C's next nI 

i A ( t )  = x ( t )  o d( t )  A's input 111 + nD 

h A ( t )  A's hidden activations n H ~  

time(t) Unique representation of t %me 

k ( t )  C's hidden activations nHc 

target input 

"normal" input 

"time" input 
S C ( t )  C's prediction of C's next ntime 

O C ( t )  dc(t) opc( t1  o s c ( t )  
9 A ( t )  A's prediction of hc(t) o o c ( t )  nHc + no, 

no, = HD + nI + ntime 

OA(t)  d A ( t )  PA( t )  q A ( t )  noA = nD + nI + nHc 

+not 
0" I, . 
0 is the concatenation operator. h ~ ( t )  and o A ( t )  are based on previous inputs and 

are computed without knowledge about d ( t )  and x ( t ) .  

and BPTT are appropriate. In particular, computationally inexpensive 
variants of BPTT (Williams and Peng 1990) are interesting: There are 
tasks with hierarchical temporal structure where only a few iterations of 
"backpropagation back into time" per time step are in principle sufficient 
to bridge arbitrary time lags (see Section 5). 

I now describe the (quite familiar) procedure for updating activations 
in a net. 

Repeat for a constant number of iterations (typically one or two): 

1. For each noninput unit j of N compute c l j  = fi(ciaiwij), where aj 
is the current activation of unit j ,  f i  is a semilinear differentiable 
function, and wil is the weight on the directed connection from unit 
i to unit j .  

2. For all noninput units j :  set aj equal to u,. 

I now specify the input-output behavior of the chunker and the autom- 
atizer as well as the details of error injection. 

Initialization: All weights are initialized randomly. In the beginning, 
at time step 0, make hc(0) and h ~ ( 0 )  equal to zero, and make iA (0 )  equal 
d(0)  o x ( 0 ) .  Represent time step 0 in time(0). Update C to obtain hc(1) 
and oc(1). 
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For all times t > 0 until interruption do: 

1. Update A to obtain hA( f )  and oA(t). A's error eA(t) is defined as 

2eA(f) = (PA(t) qA(t) - x ( t )  k(t) o C ( t ) l T  

X [ P A ( f )  qA(t )  - x ( t )  h C ( t )  oC(t)] 
f6d(t)[dA(t)  - d(t)lT[dA(t) - d( t ) l  

Use a gradient descent algorithm for dynamic recurrent nets to 
change each weight w,, of A in proportion to (the approximation 
of) -i3eA(t)/i3wij. Set iA(t )  to d( t )  o x ( t ) .  Uniquely represent t in 
time( t) . 

2. If A's low-level error 

2eP(t) = [pA(t)  - X ( f ) l T b A ( t )  - x(t)1 
f h d ( f ) [ d A ( t )  - d(t)lT[dA(t) - d(t)l 

is less or equal to a small constant B 2 0, then set hc(t + 1) = Iic(t), 
oc(t + 1) = oc(t ) .  

Else define C's prediction error ec(t) as 

2eC(t) [pC(t) - x(t)l'bC(t) - X(t)l + bd(t)[dC(t) - d(f)lT 
x[dc ( t )  - d( t ) ]  + [sc(t) - time(t)IT[sc(t) - time(t)] 

use a gradient descent algorithm for dynamic recurrent nets to 
change each weight w,j of C in proportion to (the approximation 
of) -dec(t)/awij, and update C to obtain hcit + 1) and oc(t + 1). 

5 An Experiment 

Josef Hochreiter (a student at TUM) tested a chunking system against a 
conventional recurrent net algorithm. See Hochreiter (1991) and Schmid- 
huber (1991~) for details. A prediction task with a 20-step time lag was 
constructed. There were 22 possible input symbols a ,  x ,  bl, b2,. . . , b20. The 
learning systems observed one input symbol at a time. There were only 
two possible input sequences: abl , .  . . , bZ0 and xbl, .  . . , b20. These were 
presented to the learning systems in random order. At a given time step, 
one goal was to predict the next input (note that in general it was not 
possible to predict the first symbol of each sequence due to the random 
occurrence of x and a). The second (and more difficult) goal was to make 
the activation of a particular output unit (the "target unit") equal to 1 
whenever the last 21 processed input symbols were a ,  bl ,  . , . , b20 and to 
make this activation 0 whenever the last 21 processed input symbols were 
x, bl ,  . . . , b20. No episode boundaries were used: Input sequences were 
fed to the learning systems without providing information about their 
beginnings and their ends. Therefore there was a continuous stream of 
input events. 
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With the conventional algorithm, with various learning rates, and 
with more than 1,000,000 training sequences it was not possible to obtain 
a significant performance improvement concerning the target unit. A similar 
task involving time lags of as few as 5 steps required many hundreds of 
thousands of training sequences. 

But, a chunking system was able to solve the 20-step task rather 
quickly, using an efficient approximation of the BPTT method where er- 
ror was propagated a maximum of 3 steps into the past (although there 
was a 20 step time lag!). No unique representations of time steps were 
necessary for this task. Out of 17 test runs 13 required fewer than 5000 
training sequences. The remaining test runs required fewer than 35,000 
training sequences. 

Typically, A quickly learned to predict the "easy" symbols b2, .  . . , b20. 
This led to a greatly reduced input sequence for C, which now did not 
have many problems in learning to predict the target values at the end of 
the sequences. After a while A was able to mimic C's internal representa- 
tions, which in turn allowed it to learn correct target predictions by itself. 
A's final weight matrix often looked like one that one would hope to get 
from the conventional algorithm: There were hidden units that learned 
to bridge the 20-step time lags by means of strong self-connections. The 
chunking system needed less computation per time step than the con- 
ventional method. Still it required many fewer training sequences. 

6 Concluding Remarks 

It seems that people tend to memorize and focus on atypical or unex- 
pected events and that they often try to explain new atypical events in 
terms of previous atypical events. In light of the principle of history 
compression this makes a lot of sense. 

Once events become expected, they tend to become "subconscious." 
There is an obvious analogy to the chunking algorithm: The chunker's 
attention is removed from events that become expected; they become 
"subconscious" (automatized) and give rise to even higher level "ab- 
stractions" of the chunker's " c o ~ s c ~ ~ u s ~ ~ s s . " ~  

The chunking systems described in Schmidhuber (1991a,c) and the 
current paper try to detect temporal regularities and learn to use them 
for identifying relevant points in time. A general criticism of more con- 
ventional algorithms can be formulated as follows: These algorithms do 
not try to selectively focus on relevant inputs, they waste efficiency and 
resources by focusing on every input. 

Speech is a good example of a domain involving multilevel temporal 
structure. Ongoing research will explore the application of chunking 
systems to speech recognition. 

5This distinction between attended and automized events can also be found in the 
systems of Myers (1990) and of Ring (1991). 
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The principle of history compression is not limited to neural networks. 
Any adaptive sequence processing device could make use of it. 
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