高版本CUDA安装torch1.1.0和torchvision0.3.0

本文介绍了如何在CUDA高版本环境下安装torch1.1.0和torchvision0.3.0。针对官网未提供相应版本的安装教程,作者分享了通过pip3安装的步骤,包括升级pip,指定版本安装torch和torchvision。需要注意的是,安装过程中可能会出现较慢或看似卡死的情况,但最终能成功。作者在python3.6.0和3.7.0环境下都进行了验证,建议使用3.6.0以获得更快的安装速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高版本CUDA安装torch1.1.0和torchvision0.3.0

    在项目中遇到比较麻烦的事情,需要根据项目需要安装torch1.1.0和torchvision0.3.0,但是图像工作站是CUDA的版本分别是10.2和11.6,在官网的安装教程中并没有找到安装方法,并且分开安装会自动安装pytorch的1.11.0甚至更高版本,这个很烦人。

    在网上找了相关教程,安装还是比较方便的,现在贴在下面:

    sudo pip3 install --upgrade pip
    sudo pip3 install --timeout=12000 torch==1.1.0 torchvision==0.3.0

    在安装之前自己已经安装了numpy、pillow、scipy等安装包,不知道对不会对安装产生影响,这个需要大家自己评估。如果工作站是多用户的,而且权限问题,可以去掉"sudo",直接使用pip3进行操作。

    值得注意的主要有两点,分别如下:

  1. 使用pip3安装,自己使用conda命令失败,具体原因不是很清楚;
  2. 安装会比较慢(可能是我网速的问题),中间停留了较长时间,类似卡死的情况,这个时候不要认为无法安装,慢慢等待就行。

    自己配置了两台机器,一台使用python3.6.0,一台试用python3.7.0,验证都没有问题。总体感觉,使用python3.6.0安装会快一些。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gz7seven

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值