- 博客(131)
- 资源 (23)
- 收藏
- 关注
原创 倒序排列DICOM序列图像(Z轴取反)
本文介绍如何利用SimpleITK库实现DICOM序列图像在z轴方向的反转。通过读取原始DICOM序列,使用切片操作[::-1]沿z轴倒置图像数据,同时保留原始元数据信息。程序还包含元数据复制、实例编号更新等功能,最终将处理后的图像序列保存为新DICOM文件。该方法适用于需要统一医疗图像坐标系顺序的场景,操作简便且能完整保留DICOM格式特性。
2025-06-24 15:59:03
199
原创 大模型学习笔记------Llama 3模型架构之分组查询注意力(GQA)
本文主要介绍分组查询注意力(Group Query Attention,GQA),并且同时介绍了多头注意力(MHA)和多查询注意力(MQA),并对比了三种注意力机制。
2025-04-22 23:51:56
1091
原创 大模型学习笔记------Llama 3模型架构之旋转编码(RoPE)
本文只要讲述Llama3中比较重要的旋转位置编码(RoPE)的基本原理与优点。
2025-03-14 23:36:29
1554
1
原创 大模型学习笔记------Llama 3模型架构之RMS Norm与激活函数SwiGLU
本文主要讲解Llama 3模型中RMS Norm归一化与激活函数SwiGLU,以及与相关传统方法的对比分析。
2025-03-08 17:54:26
1164
原创 大模型学习笔记------Llama 3模型架构简介
从上图整体可以看出,Llama 3模型实质上去掉了Transformer部分的编码部分,是Transformer解码部分的改进版本,即Transformer Decoder-Only,采用仅解码器架构,专注于生成式任务(文本续写、对话等)。Llama 3模型基于标准的Transformer架构进行了多项改进,包括更高的效率和更好的性能。
2025-03-04 22:36:05
1276
原创 大模型学习笔记------LLM模型开发流程
从LLM整体开发流程看,除预训练部分外,其他步骤都可以进行垂直领域的优化。由于数据成本与训练成本的问题,使用有监督微调(SFT)的方式是比较常用的。
2025-03-03 22:20:18
819
原创 大模型学习笔记------SAM模型详解与思考
本文主要介绍了Segment Anything Model(SAM)的网络结构,所有解释基本都在网络结构的图像中进行标注,可读性更强。
2024-12-16 23:25:26
3321
原创 python去除array数组中某一行
array 是目标数组,index 是要删除的行的索引(从 0 开始),axis=0 指定按行删除。python去除array数组中某一行的操作相对一个用比较多,下面直接上代码。是删除指定行后的新数组,不会影响原始 array。这样就成功删除了索引为 1 的第二行。
2024-11-05 09:27:38
436
原创 医学图像分割常用的评价指标
在医学图像分割的论文中,常常看到Dice、VOE、RVD、MSD等指标,但是具体这些指标是什么意思呢,我们进行相应的简单说明。
2022-06-17 10:52:36
9236
2
原创 windows系统下各种LibTorch下载地址
windows系统下各种LibTorch下载地址1、libtorch 1.0.02、libtorch 1.0.13、libtorch 1.1.04、libtorch 1.2.05、libtorch 1.3.06、libtorch 1.4.07、libtorch 1.5.08、libtorch 1.5.19、libtorch 1.6.010、libtorch 1.7.011、libtorch 1.7.112、libtorch 1.8.013、libtorch 1.8.114、libtorch 1.8.2(LT
2022-05-30 18:24:47
4465
4
原创 高版本CUDA安装torch1.1.0和torchvision0.3.0
高版本CUDA安装torch1.1.0和torchvision0.3.0 在项目中遇到比较麻烦的事情,需要根据项目需要安装torch1.1.0和torchvision0.3.0,但是图像工作站是CUDA的版本分别是10.2和11.6,在官网的安装教程中并没有找到安装方法,并且分开安装会自动安装pytorch的1.11.0甚至更高版本,这个很烦人。 在网上找了相关教程,安装还是比较方便的,现在贴在下面: sudo pip3 install --upgrade pip sudo
2022-05-13 18:19:22
2546
3
原创 目标检测YOLO系列------YOLO V1
目标检测YOLO系列------YOLO V11、YOLO V1详解 YOLO V1是YOLO系列的开山鼻祖,他的思路是开创性的。本文重点讲一下它的思路以及自己的一些思考。1、YOLO V1详解 目标检测算法发展的相当迅速,尤其是近几年,他的发展历程大体如下:...
2022-02-23 11:03:59
3178
原创 目标检测YOLO系列------YOLO简介
目标检测YOLO系列------YOLO简介1、为什么会出现YOLO算法2、YOLO算法会逐渐成为目标检测的主流吗 YOLO以及各种变体已经广泛应用于目标检测算法所涉及到的方方面面,为了梳理YOLO系列算法建立YOLO系列专题,按照自己的理解讲解YOLO中的知识点和自己的一些思考。本文是开篇之作,首先简单介绍一下YOLO算。1、为什么会出现YOLO算法 目标检测算法发展的相当迅速,尤其是近几年,他的发展历程大体如下: 从2012年的AlexNet开始,目标检测算法在深度学习领域开
2022-02-15 18:24:47
4460
原创 opencv3中Mat转IplImage遇到的问题与解决方案
近期在使用opencv3.4过程中,出现一个不大不小的问题,即Mat转IplImage格式中频繁报错,显示“不存在用户定义的从 “cv::Mat” 到 “IplImage” 的适当转换”。 首先声明一点,我在使用opencv2.4.8中,使用一下代码是没有问题的,是可以转换的IplImage imgTmp = image;IplImage* img = cvCloneImage(&imgTmp); 但是将代码在3.4.9中进行使用就会报文章开头那样的错误。也试过很多办法
2022-02-08 17:15:08
4217
3
原创 Pycharm运行YOLO V5遇到的问题或是BUG
再运行YOLO V5原程序过程中,晕倒几个需要解决的问题,具体如下:一、paycharm运行train.py需要添加参数,具体如下:python train.py --img 640 --batch 16 --epochs 5 --data ./data/BCC.yaml --cfg ./models/yolov5s.yaml --weights '' 如果对源码中的参数部分进行了相应的改进,或是默认设置,可以不用再次设置。二、yolov5报错:RuntimeError: a vie
2021-12-30 16:59:08
2517
原创 conda安装医学图像处理库SimpleITK、nibabel、pydicom等
最常见的医学图像有CT和MRI,这都是三维数据,相比于二维数据要难一些。而且保存下来的数据也有很多格式,常见的有.dcm、.nii(.gz)、.mha、.mhd(+raw)。所有的文件格式都可以使用SimpleITK进行处理,但是也可以使用nibabel处理.nii(.gz)格式的图像,pydicom可以对.dcm文件图像进行读取和修改。本文将讲述如何使用conda安装这三类图像处理库。 自己使用python版本为python3.7(3.6也适用),其中,SimpleITK在安装过程中使用c
2021-10-27 13:15:26
2535
1
原创 使用opencv批量读取图像 C++
在图像算法的测试与实际使用中,往往需要读取文件夹中的多张图像进行连续处理,以增加实用性和测试的方便性。本文将使用opencv + C++结合的方式进行图像的批量读取,可读取正文路径的图像。直接贴出代码,代码如下:#include<iostream>#include <opencv2/imgproc/types_c.h>#include <opencv2/opencv.hpp>using namespace std;using namespace cv;
2021-10-26 10:53:18
3318
2
原创 目标检测算法的大体框架-------backbone、head、neck
在基于深度学习算法的目标检测算法其实大体上都是由三部分组成的,即backbone、head、neck。整个算法的设计流程基本都是:输入->backbone->neck->head->输出。1、具体含义backbone 骨干网络也称为主干网络,主要用于特征提取,提取图片中的信息;head 检测头,主要用于预测目标的种类和位置(bounding boxes);...
2021-10-11 14:04:57
4006
原创 One-Stage与Two-Stage区别
在基于深度学习算法的目标检测算法主要分两类:One-Stage与Two-Stage。One-Stage与Two-Stage是两种不同的思路,其各有各的优缺点,本文做一个简单的讲述。1、思路简述One-Stage 主要思路:直接通过卷积神经网络提取特征,预测目标的分类与定位;Two-Stage 主要思路:先进行区域生成,即生成候选区域(Region Proposal),在通过卷积神经网络预测目标的分类与定位;2、优缺点优缺点One-StageTwo-Stage
2021-10-09 15:04:01
20020
2
原创 一文读懂分类算法的评价指标
在机器/深度学习分类任务中,评价模型性能的指标有很多种,在本文中将详细简介一下各个指标的含义。1、模型评价术语 在本文中我们假设是二分类问题,即只分两类:正例(positive)和负例(negative)。那么,在实际预测中就会存在以下几种情况:True positives(TP): 被正确地划分为正例的个数,即实际为正例且被预测为正例的实例数,这个在医学中称为真阳性;False positives(FP): 被错误地划分为正例的个数,即实际为负例但被预测为正例的实例数,这个在医学
2021-09-16 18:29:34
1176
原创 图像分割UNet系列------UNet3+(UNet3plus)详解
UNet3+发表于2020年的ICASSP,它是对UNet非常重要的改进,它的性能我认为是可以超过UNet++的,至少在我的使用过程中我会直接使用UNet3+,而不是UNet++。1、UNet3+解读 UNet3+解读有很多文章,自己本来想好好捋一下发在这里,后来发现有两本篇文章相当的好,所以自己偷点懒不在写了,把文章连接发在这,大家真的可以好好看看:UNet++解读 + 它是如何对UNet改进 + 作者的研究态度和方式...
2021-09-10 09:13:56
29435
17
原创 图像分割UNet系列------UNet++详解
图像分割unet系列------UNet++详解1、UNet++主要目标 UNet++发表于2018年中期,它也是UNet非常重要的改进版本之一,我认为也是最直接的改进版本。当然,UNet++在论文中主要是用息肉(polyp)、肝脏(liver)和细胞核(cell nuclei)等医学图像分割进行实验。1、UNet++主要目标...
2021-08-17 18:33:47
8617
2
原创 图像分割UNet系列------Attention Unet详解
图像分割unet系列------Attention Unet详解1、Attention Unet主要目标2、Attention Unet网络结构 Attention Unet发表于2018年中期(比Res-UNet要早一些),它也是UNet非常重要的改进版本之一。当然,Attention Unet同样也是应用在医学图像分割领域,不过文章主要是以胰脏图像分割进行实验与论证的。1、Attention Unet主要目标 作者在摘要与简介中很清楚的表明了要解决的问题以及要达到的目标。具体如下所示:
2021-08-12 13:12:40
55008
23
原创 图像分割UNet系列------Res-UNet详解
图像分割unet系列------Res-UNet详解1、Res-UNet要解决的问题2、Res-UNet主要网络结构3、引发的思考 Res-UNet发表于2018年,是UNet非常重要的改进版本之一。当然,Res-UNet同样是应用在医学图像分割领域-----视网膜血管分割。1、Res-UNet要解决的问题 作者在文章的简介中就提到了视网膜血管分割任务的主要难点和挑战,这也是Res-UNet重点解决的问题,具体如下所示(直接翻译):小血管缺失:位于血管末端的小血管有时甚至人眼也难以分辨
2021-08-10 18:47:24
45688
14
原创 图像分割UNet系列------UNet详解
图像分割unet系列------UNet详解1、UNet网络结构2、UNet网络结构高性能的原因分析 UNet最早发表在2015的MICCAI上,到2020年中旬的引用量已经超过了9700多次,估计现在都过万了,从这方面看足以见得其影响力。当然,UNet这个基本的网络结构有太多的改进型,应用范围已经远远超出了医疗图像的范畴。我们先从最原始的UNet网络模型开始讲解。1、UNet网络结构 开始时,UNet主要应用在医疗图像的分割,并且快速成为大多做医疗影像语义分割任务的baseline,而后
2021-08-06 22:32:51
17712
原创 GoogleNet------超经典神经网络结构解读
GoogleNet------超经典神经网络结构解读与PyTorch实现1、GoogleNet网络结构 在上文中详细介绍了经典神经网络VGGNet,但是同年获得ImageNet冠军分类任务的是GoogleNet。GoogleNet相比VGGNet,网络结构更深,其拥有22层(一说为27层,此时应该包括了池化操作)。GoogleNet虽然比VGGNet网络结构深,但是参数相对要少很多,具体下文进行介绍与说明。1、GoogleNet网络结构 GoogleNet的网络结果从感觉上确实是比VGGN
2021-07-23 16:12:10
1329
2
原创 VGGNet------超经典神经网络结构与PyTorch实现
VGGNet------超经典神经网络结构1、VGGNet网络结构2、VGGNet网络结构的优缺点 在上文中详细介绍了经典神经网络AlexNet,它为神经网络的发展打开了一片天地。VGGNet可以说是经典中的经典,它是所有学习深度学习的同学们都必须熟知网络。VGGNet是AlexNet的升级版,本文将详细介绍VGGNet的网络结构与相应的优缺点。1、VGGNet网络结构 VGG有众多版本,主要包括VGG11、VGG11-LRN、VGG13、VGG16-1、VGG16-3和VGG19,首先我
2021-07-09 10:59:05
1629
1
原创 AlexNet网络结构详解(含各层维度大小计算过程)与PyTorch实现
AlexNet网络结构详解(含各层维度大小计算过程)1、AlexNet之前的思考2、AlexNet网络结构3、AlexNet网络结构的主要贡献 在上文中详细介绍了第一个神经网络LeNet,但是在其提出20年的时间里并没有引起学者和各研究机构的重视,随机机器学习的兴起,LeNet网络基本被遗忘了。而真正打破机器学习和传统特征提取方法限制的深度神经网络就是本文要讲述的AlexNet。1、AlexNet之前的思考 在AlexNet网络问世之前,大量的学者在进行图像分类、分割、识别等工作时,主要是
2021-07-08 10:18:31
119019
25
原创 LeNet------识别手写数字图像的经典卷积神经网络与PyTorch实现
LeNet------识别手写数字图像的经典卷积神经网络1、LeNet简介1.1 卷积模块1.2 全连接模块2、LeNet主要贡献3、LeNet网络结构PyTorch实现1、LeNet简介LeNet的网络结构如下图所示。 由上图可以看出,LeNet模型主要有两部分组成:卷积模块(红色区域)与全连接模块(绿色区域)。而在卷积模块中主要是由卷积操作与最大池化层。1.1 卷积模块 在卷积层块中,每个卷积层都使用5×55\times 55×5的窗口,并在输出上使用sigmoid激活函数。第一
2021-07-06 14:16:41
2033
ImageNet中文翻译.pdf
2020-05-13
机器学习中的目标函数总结.docx
2020-07-17
机器学习常用算法的优缺性比较.doc
2020-07-17
VTK-8.2.0-Release.rar
2020-09-16
Going Deep in Medical Image Analysis
2019-12-31
top-hat.rar
2020-06-09
opencv3.4.5+opencv_contrib-3.4.5.rar
2021-04-02
LeastSquares.rar
2020-07-21
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人