自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(131)
  • 资源 (23)
  • 收藏
  • 关注

原创 倒序排列DICOM序列图像(Z轴取反)

本文介绍如何利用SimpleITK库实现DICOM序列图像在z轴方向的反转。通过读取原始DICOM序列,使用切片操作[::-1]沿z轴倒置图像数据,同时保留原始元数据信息。程序还包含元数据复制、实例编号更新等功能,最终将处理后的图像序列保存为新DICOM文件。该方法适用于需要统一医疗图像坐标系顺序的场景,操作简便且能完整保留DICOM格式特性。

2025-06-24 15:59:03 199

原创 大模型学习笔记------Llama 3模型架构之分组查询注意力(GQA)

本文主要介绍分组查询注意力(Group Query Attention,GQA),并且同时介绍了多头注意力(MHA)和多查询注意力(MQA),并对比了三种注意力机制。

2025-04-22 23:51:56 1091

原创 大模型学习笔记------Llama 3模型架构之旋转编码(RoPE)

本文只要讲述Llama3中比较重要的旋转位置编码(RoPE)的基本原理与优点。

2025-03-14 23:36:29 1554 1

原创 大模型学习笔记------Llama 3模型架构之RMS Norm与激活函数SwiGLU

本文主要讲解Llama 3模型中RMS Norm归一化与激活函数SwiGLU,以及与相关传统方法的对比分析。

2025-03-08 17:54:26 1164

原创 大模型学习笔记------Llama 3模型架构简介

从上图整体可以看出,Llama 3模型实质上去掉了Transformer部分的编码部分,是Transformer解码部分的改进版本,即Transformer Decoder-Only,采用仅解码器架构,专注于生成式任务(文本续写、对话等)。Llama 3模型基于标准的Transformer架构进行了多项改进,包括更高的效率和更好的性能。

2025-03-04 22:36:05 1276

原创 大模型学习笔记------LLM模型开发流程

从LLM整体开发流程看,除预训练部分外,其他步骤都可以进行垂直领域的优化。由于数据成本与训练成本的问题,使用有监督微调(SFT)的方式是比较常用的。

2025-03-03 22:20:18 819

原创 大模型学习笔记------SAM模型详解与思考

本文主要介绍了Segment Anything Model(SAM)的网络结构,所有解释基本都在网络结构的图像中进行标注,可读性更强。

2024-12-16 23:25:26 3321

原创 将分类数据划分为训练集、测试集与验证集

将数据按照一定的比例分别存到train、val和test这三个文件夹中,主要用于分类模型。

2024-12-11 16:42:09 613

原创 BLIP-2模型的详解与思考

本文主要讲解了多模态大模型BLIP-2,详细讲解了模型的结构与相关训练的方法。

2024-11-21 23:19:40 2045

原创 大模型学习笔记------BLIP模型的再思考

本文主要介绍了BLIP这个大模型相关推理方面的思考,供大家参考!

2024-11-13 22:53:01 1186

原创 将文件夹内的部分子文件夹下的jpg图像复制到另一个文件夹中

将文件夹内的部分子文件夹下的jpg图像复制到另一个文件夹中

2024-11-13 09:30:01 389

原创 大模型学习笔记------BLIP模型详解与思考

本文主要讲述CLIP大模型,对网络结构等进行了详细说明,同时对自己的思考进行了表述。

2024-11-12 23:21:44 2232

原创 大模型学习笔记------CLIP模型解读与思考

本文详细解读了CLIP模型的原理、推理与对应的一些思考。

2024-11-07 23:09:03 3148

原创 大模型学习笔记------CLIP模型的再思考

本文主要思考CLIP模型中prompt、与传统分类模型的区别以及样本问题进行分析。

2024-11-05 21:58:05 1300

原创 python去除array数组中某一行

array 是目标数组,index 是要删除的行的索引(从 0 开始),axis=0 指定按行删除。python去除array数组中某一行的操作相对一个用比较多,下面直接上代码。是删除指定行后的新数组,不会影响原始 array。这样就成功删除了索引为 1 的第二行。

2024-11-05 09:27:38 436

原创 大模型学习笔记------什么是大模型

本文主要介绍大模型的发展历程、特点、应用领域、面临的挑战等

2024-10-31 23:13:34 1462

原创 图像分割unet系列------TransUnet详解

transformer简介与实际应用中的思考

2023-08-21 23:08:57 7498 3

原创 医学图像分割常用的评价指标

在医学图像分割的论文中,常常看到Dice、VOE、RVD、MSD等指标,但是具体这些指标是什么意思呢,我们进行相应的简单说明。

2022-06-17 10:52:36 9236 2

原创 图像旋转-----opencv

使用opencv和C++对图像进行旋转操作。

2022-06-14 18:29:53 1668

原创 windows系统下各种LibTorch下载地址

windows系统下各种LibTorch下载地址1、libtorch 1.0.02、libtorch 1.0.13、libtorch 1.1.04、libtorch 1.2.05、libtorch 1.3.06、libtorch 1.4.07、libtorch 1.5.08、libtorch 1.5.19、libtorch 1.6.010、libtorch 1.7.011、libtorch 1.7.112、libtorch 1.8.013、libtorch 1.8.114、libtorch 1.8.2(LT

2022-05-30 18:24:47 4465 4

原创 高版本CUDA安装torch1.1.0和torchvision0.3.0

高版本CUDA安装torch1.1.0和torchvision0.3.0    在项目中遇到比较麻烦的事情,需要根据项目需要安装torch1.1.0和torchvision0.3.0,但是图像工作站是CUDA的版本分别是10.2和11.6,在官网的安装教程中并没有找到安装方法,并且分开安装会自动安装pytorch的1.11.0甚至更高版本,这个很烦人。    在网上找了相关教程,安装还是比较方便的,现在贴在下面: sudo pip3 install --upgrade pip sudo

2022-05-13 18:19:22 2546 3

原创 目标检测YOLO系列------YOLO V1

目标检测YOLO系列------YOLO V11、YOLO V1详解    YOLO V1是YOLO系列的开山鼻祖,他的思路是开创性的。本文重点讲一下它的思路以及自己的一些思考。1、YOLO V1详解    目标检测算法发展的相当迅速,尤其是近几年,他的发展历程大体如下:...

2022-02-23 11:03:59 3178

原创 目标检测YOLO系列------YOLO简介

目标检测YOLO系列------YOLO简介1、为什么会出现YOLO算法2、YOLO算法会逐渐成为目标检测的主流吗    YOLO以及各种变体已经广泛应用于目标检测算法所涉及到的方方面面,为了梳理YOLO系列算法建立YOLO系列专题,按照自己的理解讲解YOLO中的知识点和自己的一些思考。本文是开篇之作,首先简单介绍一下YOLO算。1、为什么会出现YOLO算法    目标检测算法发展的相当迅速,尤其是近几年,他的发展历程大体如下:    从2012年的AlexNet开始,目标检测算法在深度学习领域开

2022-02-15 18:24:47 4460

原创 opencv3中Mat转IplImage遇到的问题与解决方案

    近期在使用opencv3.4过程中,出现一个不大不小的问题,即Mat转IplImage格式中频繁报错,显示“不存在用户定义的从 “cv::Mat” 到 “IplImage” 的适当转换”。    首先声明一点,我在使用opencv2.4.8中,使用一下代码是没有问题的,是可以转换的IplImage imgTmp = image;IplImage* img = cvCloneImage(&imgTmp);    但是将代码在3.4.9中进行使用就会报文章开头那样的错误。也试过很多办法

2022-02-08 17:15:08 4217 3

原创 Pycharm运行YOLO V5遇到的问题或是BUG

    再运行YOLO V5原程序过程中,晕倒几个需要解决的问题,具体如下:一、paycharm运行train.py需要添加参数,具体如下:python train.py --img 640 --batch 16 --epochs 5 --data ./data/BCC.yaml --cfg ./models/yolov5s.yaml --weights ''    如果对源码中的参数部分进行了相应的改进,或是默认设置,可以不用再次设置。二、yolov5报错:RuntimeError: a vie

2021-12-30 16:59:08 2517

原创 图像锐化(拉普拉斯)---opencv

利用opencv对图像进行锐化处理和增强

2021-12-08 18:15:36 3952

原创 conda安装医学图像处理库SimpleITK、nibabel、pydicom等

    最常见的医学图像有CT和MRI,这都是三维数据,相比于二维数据要难一些。而且保存下来的数据也有很多格式,常见的有.dcm、.nii(.gz)、.mha、.mhd(+raw)。所有的文件格式都可以使用SimpleITK进行处理,但是也可以使用nibabel处理.nii(.gz)格式的图像,pydicom可以对.dcm文件图像进行读取和修改。本文将讲述如何使用conda安装这三类图像处理库。    自己使用python版本为python3.7(3.6也适用),其中,SimpleITK在安装过程中使用c

2021-10-27 13:15:26 2535 1

原创 使用opencv批量读取图像 C++

    在图像算法的测试与实际使用中,往往需要读取文件夹中的多张图像进行连续处理,以增加实用性和测试的方便性。本文将使用opencv + C++结合的方式进行图像的批量读取,可读取正文路径的图像。直接贴出代码,代码如下:#include<iostream>#include <opencv2/imgproc/types_c.h>#include <opencv2/opencv.hpp>using namespace std;using namespace cv;

2021-10-26 10:53:18 3318 2

原创 目标检测算法的大体框架-------backbone、head、neck

    在基于深度学习算法的目标检测算法其实大体上都是由三部分组成的,即backbone、head、neck。整个算法的设计流程基本都是:输入->backbone->neck->head->输出。1、具体含义backbone    骨干网络也称为主干网络,主要用于特征提取,提取图片中的信息;head    检测头,主要用于预测目标的种类和位置(bounding boxes);...

2021-10-11 14:04:57 4006

原创 One-Stage与Two-Stage区别

    在基于深度学习算法的目标检测算法主要分两类:One-Stage与Two-Stage。One-Stage与Two-Stage是两种不同的思路,其各有各的优缺点,本文做一个简单的讲述。1、思路简述One-Stage    主要思路:直接通过卷积神经网络提取特征,预测目标的分类与定位;Two-Stage    主要思路:先进行区域生成,即生成候选区域(Region Proposal),在通过卷积神经网络预测目标的分类与定位;2、优缺点优缺点One-StageTwo-Stage

2021-10-09 15:04:01 20020 2

原创 一文读懂分类算法的评价指标

    在机器/深度学习分类任务中,评价模型性能的指标有很多种,在本文中将详细简介一下各个指标的含义。1、模型评价术语    在本文中我们假设是二分类问题,即只分两类:正例(positive)和负例(negative)。那么,在实际预测中就会存在以下几种情况:True positives(TP): 被正确地划分为正例的个数,即实际为正例且被预测为正例的实例数,这个在医学中称为真阳性;False positives(FP): 被错误地划分为正例的个数,即实际为负例但被预测为正例的实例数,这个在医学

2021-09-16 18:29:34 1176

原创 图像分割UNet系列------UNet3+(UNet3plus)详解

    UNet3+发表于2020年的ICASSP,它是对UNet非常重要的改进,它的性能我认为是可以超过UNet++的,至少在我的使用过程中我会直接使用UNet3+,而不是UNet++。1、UNet3+解读    UNet3+解读有很多文章,自己本来想好好捋一下发在这里,后来发现有两本篇文章相当的好,所以自己偷点懒不在写了,把文章连接发在这,大家真的可以好好看看:UNet++解读 + 它是如何对UNet改进 + 作者的研究态度和方式...

2021-09-10 09:13:56 29435 17

原创 图像分割UNet系列------UNet++详解

图像分割unet系列------UNet++详解1、UNet++主要目标    UNet++发表于2018年中期,它也是UNet非常重要的改进版本之一,我认为也是最直接的改进版本。当然,UNet++在论文中主要是用息肉(polyp)、肝脏(liver)和细胞核(cell nuclei)等医学图像分割进行实验。1、UNet++主要目标...

2021-08-17 18:33:47 8617 2

原创 图像分割UNet系列------Attention Unet详解

图像分割unet系列------Attention Unet详解1、Attention Unet主要目标2、Attention Unet网络结构    Attention Unet发表于2018年中期(比Res-UNet要早一些),它也是UNet非常重要的改进版本之一。当然,Attention Unet同样也是应用在医学图像分割领域,不过文章主要是以胰脏图像分割进行实验与论证的。1、Attention Unet主要目标    作者在摘要与简介中很清楚的表明了要解决的问题以及要达到的目标。具体如下所示:

2021-08-12 13:12:40 55008 23

原创 图像分割UNet系列------Res-UNet详解

图像分割unet系列------Res-UNet详解1、Res-UNet要解决的问题2、Res-UNet主要网络结构3、引发的思考    Res-UNet发表于2018年,是UNet非常重要的改进版本之一。当然,Res-UNet同样是应用在医学图像分割领域-----视网膜血管分割。1、Res-UNet要解决的问题    作者在文章的简介中就提到了视网膜血管分割任务的主要难点和挑战,这也是Res-UNet重点解决的问题,具体如下所示(直接翻译):小血管缺失:位于血管末端的小血管有时甚至人眼也难以分辨

2021-08-10 18:47:24 45688 14

原创 图像分割UNet系列------UNet详解

图像分割unet系列------UNet详解1、UNet网络结构2、UNet网络结构高性能的原因分析    UNet最早发表在2015的MICCAI上,到2020年中旬的引用量已经超过了9700多次,估计现在都过万了,从这方面看足以见得其影响力。当然,UNet这个基本的网络结构有太多的改进型,应用范围已经远远超出了医疗图像的范畴。我们先从最原始的UNet网络模型开始讲解。1、UNet网络结构    开始时,UNet主要应用在医疗图像的分割,并且快速成为大多做医疗影像语义分割任务的baseline,而后

2021-08-06 22:32:51 17712

原创 GoogleNet------超经典神经网络结构解读

GoogleNet------超经典神经网络结构解读与PyTorch实现1、GoogleNet网络结构    在上文中详细介绍了经典神经网络VGGNet,但是同年获得ImageNet冠军分类任务的是GoogleNet。GoogleNet相比VGGNet,网络结构更深,其拥有22层(一说为27层,此时应该包括了池化操作)。GoogleNet虽然比VGGNet网络结构深,但是参数相对要少很多,具体下文进行介绍与说明。1、GoogleNet网络结构    GoogleNet的网络结果从感觉上确实是比VGGN

2021-07-23 16:12:10 1329 2

原创 VGGNet------超经典神经网络结构与PyTorch实现

VGGNet------超经典神经网络结构1、VGGNet网络结构2、VGGNet网络结构的优缺点    在上文中详细介绍了经典神经网络AlexNet,它为神经网络的发展打开了一片天地。VGGNet可以说是经典中的经典,它是所有学习深度学习的同学们都必须熟知网络。VGGNet是AlexNet的升级版,本文将详细介绍VGGNet的网络结构与相应的优缺点。1、VGGNet网络结构    VGG有众多版本,主要包括VGG11、VGG11-LRN、VGG13、VGG16-1、VGG16-3和VGG19,首先我

2021-07-09 10:59:05 1629 1

原创 AlexNet网络结构详解(含各层维度大小计算过程)与PyTorch实现

AlexNet网络结构详解(含各层维度大小计算过程)1、AlexNet之前的思考2、AlexNet网络结构3、AlexNet网络结构的主要贡献    在上文中详细介绍了第一个神经网络LeNet,但是在其提出20年的时间里并没有引起学者和各研究机构的重视,随机机器学习的兴起,LeNet网络基本被遗忘了。而真正打破机器学习和传统特征提取方法限制的深度神经网络就是本文要讲述的AlexNet。1、AlexNet之前的思考    在AlexNet网络问世之前,大量的学者在进行图像分类、分割、识别等工作时,主要是

2021-07-08 10:18:31 119019 25

原创 LeNet------识别手写数字图像的经典卷积神经网络与PyTorch实现

LeNet------识别手写数字图像的经典卷积神经网络1、LeNet简介1.1 卷积模块1.2 全连接模块2、LeNet主要贡献3、LeNet网络结构PyTorch实现1、LeNet简介LeNet的网络结构如下图所示。    由上图可以看出,LeNet模型主要有两部分组成:卷积模块(红色区域)与全连接模块(绿色区域)。而在卷积模块中主要是由卷积操作与最大池化层。1.1 卷积模块    在卷积层块中,每个卷积层都使用5×55\times 55×5的窗口,并在输出上使用sigmoid激活函数。第一

2021-07-06 14:16:41 2033

Virtools界面简介

Virtools界面简介,可以让你快速熟悉virtools的界面!非常有用的

2013-06-16

ImageNet中文翻译.pdf

ImageNet即ImageNet Classification with Deep Convolutional Neural Networks完整的中文翻译

2020-05-13

机器学习中的目标函数总结.docx

几乎所有的机器学习算法最后都归结为求解最优化问题,以达到我们想让算法达到的目标。为了完成某一目标,需要构造出一个“目标函数”来,然后让该函数取极大值或极小值,从而得到机器学习算法的模型参数。如何构造出一个合理的目标函数,是建立机器学习算法的关键,一旦目标函数确定,接下来就是求解最优化问题,这在数学上一般有现成的方案。

2020-07-17

机器学习常用算法的优缺性比较.doc

机器学习算法很多,分类、回归、聚类、推荐、图像识别领域等等,要想找到一个合适算法真的不容易。本文选择大家普遍认同的算法,诸如SVM,GBDT,Adaboost,神经网络等,分析她们的优缺点,供大家参考。

2020-07-17

本科毕业设计开题报告PPT

本科毕业设计开题报告PPT,主要是初期答辩所用的一个简单模板,对于学生是一个不错的选择。

2015-07-03

ITK-5.1.zip

ITK是非常重要的医学图像处理库,本资源是VS2019生成的5.1版本,亲测没有问题

2022-01-18

VTK-8.2.0-Release.rar

鉴于VTK-8.2.0在Visual Studio2019进行编译的困难性,作者将编译好的release版本发在网上供大家下载与参考。

2020-09-16

sobel算子 边缘检测

详细讲解sobel算子的原理,有程序与实例图像,sobel算子是边缘检测的基本算子之一。

2015-09-25

Going Deep in Medical Image Analysis

Going Deep in Medical Image Analysis:Concepts, Methods, Challenges and Future Directions --深入医学图像分析:概念,方法,挑战和未来方向;此文章2019年发表于Computer Vision and Pattern Recognition期刊,讲解了深度学习各框架在医疗图像各领域的应用与挑战,对各个网络结构进行了大量的分析,非常好的一片文章。本人进行了翻译,可进行中英文对照阅读。

2019-12-31

top-hat.rar

当一幅图像具有大幅的背景的时候,而微小物品比较有规律的情况下,可以使用顶帽运算进行背景提取。同时,由于背景光不同导致有些暗背景的地方出现了丢失现象。使用顶帽变换,可以很好地解决这个问题。

2020-06-09

AI必备数学知识.rar

AI必备数学知识,主要是知识点的框架,使用XMind可打开。

2021-09-24

AI之计算机视觉.rar

计算机视觉所需要的知识点,包括数字图像处理和深度学习两个部分,主要是框架类说明。

2021-09-24

VTK-8.2.0-Debug.rar

鉴于VTK-8.2.0在Visual Studio2019进行编译的困难性,作者将编译好的debug版本发在网上供大家下载与参考。

2020-09-16

opencv3.4.5+opencv_contrib-3.4.5.rar

opencv3.4.5与opencv_contrib3.4.5源码在下载过程中由于网络问题或是墙的问题无法下载或下载较慢,本人上传已经下载好的源码,以便大家下载。

2021-04-02

filesRename.py

批量命名文件并保存到指定文件夹,通过 python完成,完成文件的重命名

2021-03-09

opencv3.4.9.rar

此为VS2019编译的opencv3.4.9版本,亲测可用。

2021-01-07

LeastSquares.rar

利用最小二乘算法拟合曲线,同时使用VS2013和opencv进行程序的编写,大家可以参考,亲测可用。可直接运行,也可以自己建立相应的环境将主函数添加进去即可!

2020-07-21

红色正方形

OpenGL典型的代码,一个红色的正方形,简单易懂,可以作为测试程序。

2015-09-11

单片机开发板原理图

单片机开发板原理图都在里面,是初学者必须懂得哟!

2013-03-10

从零开始学习电气控制和PLC.pdf

从零开始学习电气控制和PLC,是一部很好的书,零基础都可以看懂

2013-06-16

opengl 钟表

opengl 实例程序,钟表这个程序简单直观,适用于初级学习者。各行代码基本上都有解释。

2015-04-17

C语言(适于初学者)

C语言初学者不可多得的资源,有操作函数,实例,通俗易懂。希望能对广大初学者有所帮助

2012-11-04

本科毕业设计开题报告

本科毕业设计开题报告,主要是初期答辩的内容,具有模板的作用,值得一看。

2015-07-03

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除