回归评估+解释方差分

本文探讨了如何使用Python的sklearn库进行回归模型评估,重点关注explained_variance_score指标。该指标评估模型对数据波动的解释程度,1.0表示完美,数值越小表明模型效果越差。示例展示了如何计算并解释该得分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

回归评估+解释方差分

 

See the source image

See the source image

 

python的sklearn.metrics中包含一些损失函数,评分指标来评估回归模型的效果。主要包含以下几个指标:n_squared_error, mean_absolute_error, explained_variance_score and r2_score等。

 

explained_variance_score(解释方差分)

y_hat :预测值, y :真实值, var :方差

 

explained_variance_score:解释方差分,这个指标用来衡量我们模型对数据集波动的解释程度,如果取值为1时,模型就完美,越小效果就越差。下面是python的使用情况:

 

sk

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值