混淆矩阵(confusion matrix)是什么?以及能从混淆矩阵中衍生出来的指标FPR、TPR、FDR、ACC、PPV、NPV分别是什么?对应的概念及公式是什么?

混淆矩阵是机器学习和人工智能中评估分类模型的重要工具,它展示了模型预测结果与真实结果的对比。FPR(伪阳性率)表示误判为正类的比例,TPR(真阳性率/召回率)是正确识别正类的比例,FDR是假阳性发现率,ACC(准确度)是预测正确的样本占比,PPV(阳性预测值/精度)是预测为正类中真正为正的比例,NPV(阴性预测值)是预测为负类中真正为负的比例。这些指标帮助我们全面评估模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值