广义线性模型GLM、GLMM、LMM、MLM、GMM、GEE、广义线性模型GLM和广义线性混合模型的GLMM区别

这篇博客详细介绍了R语言中几种广义线性模型的区别,包括GLM、GLMM、LMM、MLM、GMM和GEE。GLM放宽了线性模型的假设,适用于非正态分布的响应变量。GLMM结合了GLM和线性混合模型,适合处理层次结构数据。LMM处理相关数据,MLM从多水平角度理解数据。GMM是高斯分布的组合模型,而GEE用于分析相关性数据的回归模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言广义线性模型GLM、GLMM、LMM、MLM、GMM、GEE、广义线性模型GLM和广义线性混合模型的GLMM区别

目录

R语言广义线性模型GLM、GLMM、LMM、MLM、GMM、GEE、广义线性模型GLM和广义线性混合模型的GLMM区别

#广义线性模型(generalized linear model, GLM)

#广义线性混合模型(GLMM ,generalized linear mixed model)

#线性混合模型LMM

#多水平模型MLM

#高斯混合模型 GMM

#广义估计方程 GEE

#广义线性模型(GLM,generalized linear model)和广义线性混合模型(GLMM ,generalized linear mixed model)的区别


#广义线性模型(generalized linear model, GLM)

广义线性模型(generalized linear model, GLM)是简单最小二乘回归(OLS)的扩展,在OLS的假设中,响应变量是连续数值数据且服从正态分布,而且响应变量期

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值