python使用numpy包编写自定义函数计算SMAPE(对称平均绝对百分比误差)指标Symmetric mean absolute percentage error、SMAPE指标解读、指标使用的注

本文介绍了如何使用Python的numpy包编写自定义函数来计算对称平均绝对百分比误差(SMAPE)指标,用于评估回归模型和时间序列模型。SMAPE与MAPE的区别在于其分母的优化,使其对误差评估更为对称。文章还讨论了SMAPE的适用范围和使用注意事项,包括当分母为零时的特殊情况,以及在数据幅度较低时可能导致的误差放大问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值