用 LazyLLM 搭建一个代码注释 / 文档 Agent 的实测体验

作为一名经常需要写代码的开发者,我常常被一个问题困扰:写代码本身并不难,但写清晰的函数注释和 API 文档却很费时间。尤其在多人协作项目里,如果缺少规范的注释,新人接手代码往往需要花大量时间理解。

最近,我尝试用 LazyLLM 来做一个小实验:让它自动扫描代码库,生成函数注释和接口文档。下面分享一下我基于 LazyLLM 的实测过程。


环境准备

首先在本地新建了一个虚拟环境 lazyllm-venv311,以便和其他项目隔离。激活环境后,可以在命令行的开头看到 (lazyllm-venv311) 的提示。

在这里插入图片描述
从 GitHub 下载 LazyLLM 的代码:

git clone https://github.com/LazyAGI/LazyLLM.git

安装基础依赖:

pip install -r requirements.txt

在这里插入图片描述

选择一个平台获取 api key

在这里插入图片描述


第一个小实验:对话机器人

LazyLLM 的入门 demo 是一个聊天机器人。代码非常简单:

import lazyllm

chat = lazyllm.OnlineChatModule(
    source="qwen",       # 指定使用通义千问
    api_key="sk-xxxx"    # 这里换成你自己的 key
)

while True:
    query = input("query(enter 'quit' to exit): ")
    if query == "quit":
        break
    res = chat.forward(query)
    print(f"answer: {res}")

运行后,我在控制台输入“你好”,模型马上就回复了“你好!有什么我可以帮你的吗?”。到这里,说明 LazyLLM 已经正常跑起来了。

在这里插入图片描述


使用 Web 界面

除了命令行方式,LazyLLM 还自带了一个 Web 界面模块 WebModule,可以快速把对话机器人跑在浏览器里,更直观地交互。

示例代码如下:

import lazyllm

chat = lazyllm.OnlineChatModule(source="qwen", api_key="sk-xxxx")
lazyllm.WebModule(chat, port=23333).start().wait()

这里的 WebModule 接受两个参数:

  • chat:我们上面创建的聊天模块
  • port:Web 服务监听的端口号(这里是 23333)

运行后,在浏览器访问 http://localhost:23333,就能看到一个简洁的聊天页面,可以直接和模型对话。

在这里插入图片描述

⚠️ 注意:如果访问失败,通常是因为端口被占用、代理/防火墙拦截,可以在终端查看报错信息并调整。

这个小功能让我想到:LazyLLM 不仅能写后端逻辑,还能几行代码就搭好一个可视化 Demo,对于想做快速原型的开发者非常友好。

在这里插入图片描述


核心实验:自动生成函数注释与 API 文档

除了聊天和 Web 界面,LazyLLM 还可以构建 本地 Agent,实现对 Python 文件的扫描与自动文档生成。我的实验流程如下:

  1. 指定本地 Python 文件(例如 snake.py)。
  2. 读取文件内容
  3. 将代码作为上下文交给模型
  4. 自动生成函数注释和 API 文档

示例代码

import lazyllm

# 初始化在线聊天模块
chat = lazyllm.OnlineChatModule(source="qwen", api_key="sk-xxxx")

def generate_doc(file_path):
    # 读取本地 Python 文件
    with open(file_path, "r", encoding="utf-8") as f:
        code = f.read()
    
    # 提示模型生成函数注释和 API 文档
    prompt = f"""
你是一个代码文档生成助手。
请为以下 Python 代码自动生成清晰的函数注释和 API 文档,包括:
- 函数用途
- 参数说明
- 返回值说明
代码如下:
{code}
"""
    # 调用模型生成文档
    res = chat.forward(prompt)
    return res

if __name__ == "__main__":
    doc = generate_doc(r"E:\python\LazyLLM\snake.py")  # 指定本地文件
    print("=== 自动生成的注释与文档 ===")
    print(doc)

输入示例:贪吃蛇(snake.py)

import pygame
import random

def create_food(snake_body, screen_width, screen_height, block_size):
    while True:
        x = random.randrange(0, screen_width, block_size)
        y = random.randrange(0, screen_height, block_size)
        if (x, y) not in snake_body:
            return (x, y)

def move_snake(direction, snake_body, grow=False):
    head_x, head_y = snake_body[0]
    if direction == "UP":
        new_head = (head_x, head_y - 20)
    elif direction == "DOWN":
        new_head = (head_x, head_y + 20)
    elif direction == "LEFT":
        new_head = (head_x - 20, head_y)
    else:
        new_head = (head_x + 20, head_y)

    snake_body.insert(0, new_head)
    if not grow:
        snake_body.pop()
    return snake_body

模型输出示例(自动生成单个文件函数注释)

=== 自动生成的注释与文档 ===
以下是为你提供的 Python 代码生成的函数注释和 API 文档:

---

## `create_food(snake_body, screen_width, screen_height, block_size)`

### 用途
该函数用于在游戏区域内随机生成一个食物的位置,确保该位置不在蛇的身体上。

### 参数说明
- `snake_body``List[Tuple[int, int]]`  
  表示蛇身体各个部分的坐标列表,每个元素是一个 (x, y) 坐标元组。
- `screen_width``int`  
  游戏窗口的宽度(像素)。
- `screen_height``int`  
  游戏窗口的高度(像素)。
- `block_size``int`  
  蛇的每个身体块和食物的大小(通常为 20 像素)。

### 返回值
- `Tuple[int, int]`
  返回一个不在蛇身体上的随机坐标 (x, y),用于放置食物。

---

## `move_snake(direction, snake_body, grow=False)`

### 用途
根据当前的方向移动蛇,并更新蛇的身体位置。如果蛇吃到了食物,则蛇身增长。        

### 参数说明
- `direction``str`
  蛇的移动方向,可以是 `"UP"``"DOWN"``"LEFT"``"RIGHT"`- `snake_body``List[Tuple[int, int]]`
  表示蛇身体各个部分的坐标列表,第一个元素为蛇头。
- `grow``bool`,可选
  是否增长蛇身,默认为 `False`。当蛇吃到食物时应设为 `True`。

### 返回值
- `List[Tuple[int, int]]`
  返回更新后的蛇身体坐标列表。

---

### 示例用法
```python
# 初始化蛇身(假设每个块大小为20)
snake = [(100, 100), (120, 100), (140, 100)]

# 向右移动,不增长
snake = move_snake("RIGHT", snake)

# 生成食物
food_pos = create_food(snake, 600, 400, 20)

在这里插入图片描述


如果你希望扫描整个目录下所有 .py 文件、批量生成注释和 API 文档的版本,也是可以实现的,这样就像一个本地的“小型代码文档 Agent”。

代码示例如下:

import lazyllm
import os

# 初始化在线聊天模块
chat = lazyllm.OnlineChatModule(source="qwen", api_key="sk-xxxx")

def generate_doc_from_code(code):
    """
    给定一段 Python 代码,调用模型生成函数注释和 API 文档。
    """
    prompt = f"""
你是一个代码文档生成助手。
请为以下 Python 代码自动生成清晰的函数注释和 API 文档,包括:
- 函数用途
- 参数说明
- 返回值说明
代码如下:
{code}
"""
    return chat.forward(prompt)

def scan_directory_and_generate_docs(directory=r"E:\python\LazyLLM"):
    """
    扫描目录下所有 .py 文件,生成文档并保存到同目录的 _docs 文件夹中
    """
    output_dir = os.path.join(directory, "_docs")
    os.makedirs(output_dir, exist_ok=True)

    for root, _, files in os.walk(directory):
        for file in files:
            if file.endswith(".py"):
                file_path = os.path.join(root, file)
                print(f"正在处理: {file_path}")
                
                # 读取代码
                with open(file_path, "r", encoding="utf-8") as f:
                    code = f.read()

                # 调用模型生成文档
                doc = generate_doc_from_code(code)

                # 保存文档
                output_file = os.path.join(output_dir, file.replace(".py", "_doc.txt"))
                with open(output_file, "w", encoding="utf-8") as f:
                    f.write(doc)

                print(f"文档已保存: {output_file}\n")

if __name__ == "__main__":
    scan_directory_and_generate_docs()  # 默认扫描 E:\python\LazyLLM

✅ 功能说明:

1.自动扫描 E:\python\LazyLLM 下的所有 .py 文件(包括子目录)。
2.为每个文件生成函数注释和 API 文档。
3.文档统一保存到 _docs 文件夹里。

模型输出示例(自动生成多个文件函数注释)

在这里插入图片描述

在这里插入图片描述


进阶实验:将注释直接写入源代码

前面的实验里,我们让模型生成了函数注释和 API 文档,但这些是单独保存成文本文件的。如果能让模型直接把注释写回到源代码中,就能在代码编辑器里立刻看到,体验更接近“代码即文档”。

示例代码

import lazyllm
import os

# 初始化在线聊天模块
chat = lazyllm.OnlineChatModule(source="qwen", api_key="sk-xxxx")

def add_comments_to_code(code):
    """
    调用模型,为代码中的函数生成 docstring 并直接插入到源文件中。
    """
    prompt = f"""
你是一个代码注释助手。
请在以下 Python 源代码中,自动为每个函数和类添加清晰的 docstring,
包括:
- 函数/类的用途
- 参数说明
- 返回值说明
要求直接在代码中插入,不要输出额外解释。

代码如下:
{code}
"""
    return chat.forward(prompt)

def rewrite_file_with_comments(file_path, output_path=None):
    """
    读取 Python 文件,生成带注释的新代码,并写回文件。
    """
    with open(file_path, "r", encoding="utf-8") as f:
        code = f.read()

    # 调用模型生成带注释的新代码
    commented_code = add_comments_to_code(code)

    # 如果没有指定输出文件,就覆盖原文件
    if output_path is None:
        output_path = file_path

    with open(output_path, "w", encoding="utf-8") as f:
        f.write(commented_code)

    print(f"注释已写入文件: {output_path}")

if __name__ == "__main__":
    test_file = r"E:\python\LazyLLM\snake.py"
    rewrite_file_with_comments(test_file, output_path=test_file.replace(".py", "_commented.py"))

输入示例:原始 snake.py

import pygame
import random

def create_food(snake_body, screen_width, screen_height, block_size):
    while True:
        x = random.randrange(0, screen_width, block_size)
        y = random.randrange(0, screen_height, block_size)
        if (x, y) not in snake_body:
            return (x, y)

def move_snake(direction, snake_body, grow=False):
    head_x, head_y = snake_body[0]
    if direction == "UP":
        new_head = (head_x, head_y - 20)
    elif direction == "DOWN":
        new_head = (head_x, head_y + 20)
    elif direction == "LEFT":
        new_head = (head_x - 20, head_y)
    else:
        new_head = (head_x + 20, head_y)

    snake_body.insert(0, new_head)
    if not grow:
        snake_body.pop()
    return snake_body

模型输出示例(自动插入注释后的 snake_commented.py

import pygame
import random


def create_food(snake_body, screen_width, screen_height, block_size):
    """
    创建一个随机位置的食物,确保食物的位置不在蛇的身体上。

    参数:
    snake_body (list): 蛇身体的坐标列表
    screen_width (int): 游戏窗口的宽度
    screen_height (int): 游戏窗口的高度
    block_size (int): 蛇身每一节的大小

    返回:
    tuple: 食物的坐标 (x, y)
    """
    while True:
        x = random.randrange(0, screen_width, block_size)
        y = random.randrange(0, screen_height, block_size)
        if (x, y) not in snake_body:
            return (x, y)


def move_snake(direction, snake_body, grow=False):
    """
    根据当前方向移动蛇,并更新蛇的身体坐标。

    参数:
    direction (str): 蛇的移动方向,可以是 "UP", "DOWN", "LEFT", "RIGHT"
    snake_body (list): 蛇身体的坐标列表
    grow (bool): 是否增长蛇的身体(吃食物时为 True)

    返回:
    list: 更新后的蛇身体坐标列表
    """
    head_x, head_y = snake_body[0]
    if direction == "UP":
        new_head = (head_x, head_y - 20)
    elif direction == "DOWN":
        new_head = (head_x, head_y + 20)
    elif direction == "LEFT":
        new_head = (head_x - 20, head_y)
    else:
        new_head = (head_x + 20, head_y)

    snake_body.insert(0, new_head)
    if not grow:
        snake_body.pop()
    return snake_body

在这里插入图片描述
在这里插入图片描述


✅ 功能说明:

  1. 自动调用模型,在函数内部插入符合规范的 docstring
  2. 可以选择覆盖源文件,或者生成新的 _commented.py 文件;
  3. 在编辑器里就能直接看到函数注释,无需再切换到文档文件夹。

这样就实现了“代码即文档”的效果。

总结

整个体验过程下来,我主要做了以下尝试:先在本地搭好虚拟环境,安装并配置 LazyLLM,然后用它跑了一个简单的对话机器人,验证模型可以正常工作。然后我试着用 Web 界面快速和模型交互,感觉直观又方便。最核心的实验是让它扫描 Python 文件,自动生成函数注释和 API 文档,不管是单个文件还是整个目录,都能自动生成清晰的函数用途、参数说明和返回值文档,几秒钟就完成了以前需要手动写很久的工作。

用下来,我觉得 LazyLLM 有几个明显优势:上手快、效率高,生成的文档风格统一,而且非常灵活,可以直接在本地用,也能扩展成更复杂的代码辅助工具。对我这种经常写代码的人来说,省下了不少写注释和整理文档的时间,也让团队协作更加顺畅。总体来说,它不仅是一个聊天 SDK,更像是一个本地可落地的智能代码助手。

📺 想更深入掌握 LazyLLM 的使用技巧?

B站上线了一套免费视频课程,手把手带你从入门到实战,快速上手智能代码开发!
👉 点击观看:LazyLLM 实战教程 - 从零搭建智能代码助手

💡 欢迎关注公众号【LazyLLM】
获取更多 AI 开发技巧、最新工具评测和实战案例!定期分享编程干货与独家资源~

在这里插入图片描述

一起交流

如果你也尝试了 LazyLLM,欢迎在评论区分享你的使用体验或遇到的问题!

<think>我们参考用户提供的引用资料,结合用户问题“如何搭建一个简单的多agent系统”,给出分步教程。 引用[1]介绍了在扣子平台搭建AI Agent的入门教程,适合无编程基础的用户。 引用[2]介绍了使用MetaGPT框架开发多智能体系统,适合有一定编程基础的用户。 引用[3]介绍了基于开源模型搭建Agent系统的概念。 引用[4]介绍了使用dify云版本开发Agent。 根据用户需求,我们提供两种搭建方式: 1. 无编程基础:使用扣子平台(如引用[1]) 2. 有编程基础:使用MetaGPT框架(如引用[2])或Dify平台(如引用[4]) 下面我们分别给出两种方式的步骤:</think>### 如何搭建简单的多Agent系统(分步教程) #### 🚀 方法一:无代码平台搭建(适合初学者) 1. **选择平台** - 使用「扣子平台」[^1]:无需编程基础,可视化搭建 - 使用「Dify」云平台[^4]:支持大模型集成 2. **创建基础Agent**(以新闻推送Agent为例[^1]) ```python # 扣子平台伪代码流程 1. 创建新Agent → 命名"AI新闻助手" 2. 添加技能: - 输入:用户兴趣标签(科技/金融等) - 处理:调用新闻API过滤内容 - 输出:每日定时推送摘要 3. 部署:绑定微信/邮箱推送渠道 ``` 3. **扩展多Agent协作** - 示例:新闻分析系统 - Agent1:数据采集(爬取新闻) - Agent2:内容过滤(关键词提取) - Agent3:推送服务(用户分发) - 在平台设置Agent间数据流转规则[^1] > 优势:30分钟完成部署,支持微信/钉钉等即时通信集成[^1] --- #### 💻 方法二:编程实现(适合开发者) **使用MetaGPT框架**[^2]: ```bash # 环境安装 pip install metagpt==0.7.2 ``` **三步构建多Agent系统**: 1. **定义Agent角色**(代码示例) ```python from metagpt.roles import Role class NewsCollector(Role): name = "爬虫Agent" def run(self, topic): return scrape_news(topic) # 爬取新闻数据 class ContentAnalyzer(Role): name = "分析Agent" def run(self, news): return extract_keywords(news) # 提取关键词 ``` 2. **配置协作流程** ```python from metagpt.teams import Team # 创建Agent团队 team = Team() team.hire([NewsCollector(), ContentAnalyzer()]) # 设置工作流 team.run_project( input_data="人工智能", workflow=[ ("爬虫Agent", "分析Agent"), # 爬虫结果传递给分析 ("分析Agent", "用户输出") # 分析结果直接输出 ] ) ``` 3. **运行与监控** ```bash # 启动系统 python -m metagpt start_team # 查看运行日志 [2024-06-15 10:00] 爬虫Agent: 获取20条新闻 [2024-06-15 10:03] 分析Agent: 生成关键词云 ``` #### 🔧 关键技术点 1. **通信机制** - Agent间通过共享内存(Redis)或消息队列(RabbitMQ)交互[^2] ```mermaid graph LR A[爬虫Agent] -->|JSON数据| B(消息队列) B --> C[分析Agent] ``` 2. **任务调度** - 使用Round-Robin轮询分配任务 - 优先级队列处理紧急请求 3. **调试技巧** - 开启Agent思维链日志: ```python from metagpt.logs import logger logger.info(f"{self.name}处理中,输入:{input_data}") ``` --- ### 不同方案的对比 | 方案 | 开发速度 | 灵活性 | 适用场景 | |------|----------|--------|----------| | 扣子平台 | ⭐⭐⭐⭐ | ⭐⭐ | 简单工作流/无代码需求 | | MetaGPT | ⭐⭐⭐ | ⭐⭐⭐⭐ | 复杂业务/定制开发 | | Dify | ⭐⭐⭐ | ⭐⭐⭐ | 大模型集成场景 | > 实践建议:从2-3个Agent的小系统开始,优先验证核心工作流[^2][^4] --- ### 📚 学习资源推荐 1. [MetaGPT官方教程](https://docs.deepwisdom.ai/) - 多Agent案例库[^2] 2. [扣子平台入门](https://www.coze.cn/) - 无代码实验场[^1] 3. [LangChain多Agent指南](https://python.langchain.com/) - 高级开发框架
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海拥✘

“听说赞赏的人运气会爆棚哦!”

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值