Pytorch 亲妈级安装教程(GPU or CPU版本)

本文详细介绍了如何在Anaconda虚拟环境中安装PyTorch,包括选择合适的CUDA和CUDNN版本,以及利用清华源加速下载。通过提供具体的安装步骤和检测方法,确保GPU版本的PyTorch正确安装并能识别GPU设备。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文只讲干货。

首先就是咱们需要确定下CPU还是GPU版本,那毋庸置疑,都玩这玩意了,CPU版本dog都不下!(开玩笑呢哈哈哈,如果你想下CPU版的也行,安装过程也简单)

上来就是版本对应问题,版本对应问题可以去看我的tensorflow安装的文章(这篇文章里的很多东西这篇文章可以用到):

Tensorflow亲妈级安装教程(CPU和GPU版)_深海鱼肝油ya的博客-CSDN博客

pytorch这玩意安装时自带cuda和cudnn(这可比tensorflow安装时方便多了),我要是在anaconda的虚拟环境里安装的话,那这个的版本选择应该还会受限于电脑显卡驱动版本的影响吧,我的cuda和cudnn是本科的时候装的,有点老了,10.0的,我看官网,cuda10.0对应pytorch是1.2.0,现在都1.13了,差的有点多;不过因为pytorch自带cuda啥的,而且咱们是在conda的虚拟环境里安装,这就方便太多,我的显卡驱动版本能对应到的最高的cuda版本是11.0,我看官网上cuda10.2 都能下pytorch1.12.1的版本,还是可以的,蛮舒服。

接下来就是anaconda创建虚拟环境,然后激活(进入)环境

然后去pytorch官网:PyTorch

在主页这里选择配置完毕之后,在最底下会生成安装命令,复制之后到conda虚拟环境下(命令行形式)粘贴执行即可(记得把-c pytorch去掉),执行命令之前可以先为conda设置清华源,参考下面这篇文章:

conda配置清华源_blueman8888的博客-CSDN博客_conda配置清华源

用户目录就是像下面那样,当然不同人的电脑可能文件名称不一样。

换了源之后就可执行命令,等待安装成功!

解决pytorch安装下载慢(清华源+缓存到本地):

亲测绝对有效——解决pytorch安装下载慢(清华源+缓存到本地) - 灰信网(软件开发博客聚合)

安装过程也可以参考下面两篇文章:

Windows下安装pytorch-GPU版本(小白踩坑安装过程记录)_一只爱学习的兔子的博客-CSDN博客

PyTorch安装教程_诸神缄默不语的博客-CSDN博客_pythorch安装


安装成功之后检测:

import  torch 
#检测使用了哪个GPU
print(torch.cuda.get_device_name(0))
#torch版本
print(torch.__version__)
#cuda的版本
print(torch.version.cuda)

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深海鱼肝油ya

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值