十行代码训练sklearn七种分类算法

本文深入探讨了多种机器学习分类算法,包括KNN、LR、RF、DT、SVM、SVMCV和GBDT,详细解析了每种算法的工作原理、优缺点及应用场景。同时,文章还介绍了模型融合技术,如何通过Stacking融合多个模型以提高预测精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文链接:https://blog.csdn.net/Vapor_/article/details/80625988

依赖的python库

  • os
  • time
  • sklearn
  • numpy

简易demo

from sklearn import datasets
from classify import ClassfyMethods
from sklearn.model_selection import train_test_split


if __name__ == '__main__':
    iris = datasets.load_iris()  #sklearn鸢尾花数据集作为测试
    train_X, train_Y = iris.data, iris.target
    train_X, test_x, train_Y,  _ = train_test_split(train_X, train_Y, test_size=.3)
    print(train_X.shape, train_Y.shape)
    Thanos = ClassfyMethods() #实例化分类算法对象
    Thanos.train_all(train_X, train_Y) #七种分类算法进行训练并交叉验证
    Thanos.ensembling(train_X, train_Y, test_x)  #进行模型融合

安装包结构

分类算法

class ClassfyMethods(object):
    def __init__(self, k_fold_num=5 ):
        self.sortedClassifies = []
        self.sortedIndex = []
        self.test_classifiers = ['KNN', 'LR', 'RF', 'DT', 'SVM', 'SVMCV', 'GBDT']
        self.classifiers = {'KNN': self.knn_classifier,
                            'LR': self.logistic_regression_classifier,
                            'RF': self.random_forest_classifier,
                            'DT': self.decision_tree_classifier,
                            'SVM': self.svm_classifier,
                            'SVMCV': self.svm_cross_validation,
                            'GBDT': self.gradient_boosting_classifier
                            }



  • 传入参数k_fold_num,当参数缺省时,默认为5。如果处理训练样本比较大,可适当提高数值(一般为10)。

  • 有七种分类算法分别对应:KNN(K-nearest Neighbor, 近邻分类算法)、LR(Lenear Regression,线性回归分类算法)、RF(Random Forrest, 随机森林分类算法)、DT(Decision Tree, 决策树分类算法)、SVM(Support Vector Machine,支持向量机)、SVMCV(Support Vector Machine, 交叉验证的支持向量机)、GBDT(Gradient Boosting Decision Tree,梯度提升决策树)

# KNN Classifier
def knn_classifier(self, train_x, train_y):
    from sklearn.neighbors import KNeighborsClassifier
    model = KNeighborsClassifier()
    model.fit(train_x, train_y)
    return model

# Logistic Regression Classifier
def logistic_regression_classifier(self, train_x, train_y):
    pass

# Random Forest Classifier
def random_forest_classifier(self, train_x, train_y):
    pass

# Decision Tree Classifier
def decision_tree_classifier(self, train_x, train_y):
    pass

# GBDT(Gradient Boosting Decision Tree) Classifier
def gradient_boosting_classifier(self, train_x, train_y):
    pass

#SVM Classifier
def svm_classifier(self, train_x, train_y):
    pass

# SVM Classifier using cross validation
def svm_cross_validation(self, train_x, train_y):
    pass
  • 这里只展示KNN分类算法的具体细节,其他分类算法大同小异,不做赘述, 
    大都是从sklearn引入分类模型,对传进来的参数进行训练返回模型

数据处理

def read_data(self, train_X, train_Y, split_size=.3):
    pass
  • 穿参split_size的值默认值为0.3,防止参数缺省时报错,用户可自定义切割尺寸。
  • 传入的train_X, train_Y 的尺寸必须规整,不能有NAN空值。故对传入参数进行检验, 
    如传入参数有误,则会提示* train_X must be full size. Its row equals to train_Y’s row *

模型训练

def train_all(self, train_X, train_Y):
    pass

  • 依次将分类算法进行训练,并保存各个分类算法模型到./models/目录下(当前路径无该目录时可自动生成),命名规则为:算法缩写.model(etc: KNN.model)
  • 判断是否为二分类问题,如果是,打印precision(准确率)和recall(召回率)。利用交叉检验,默认为10-Fold 交叉检验,打印accuracy(精确率)。
  • 将各个分类算法交叉检验的accuracy从大到小排序,存储对应分类算法下标到self.sortedIndex。为后期模型融合做准备

模型融合

def ensembling(self, train_x, train_y, test_x, n_folds=5, ensemble_num=3):
    pass
  • 将表现最好的ensemble_num=3个模型进行Stacking融合,用户可根据实际效果,判断模型融合的模型个数, 
    具体融合为规则为: 
    • Base Model 之间的相关性要尽可能的小。这就是为什么非 Tree-based Model 往往表现不是最好 
      但还是要将它们包括在 Ensemble 里面的原因。Ensemble 的 Diversity 越大,最终 Model 的 Bias 
      就越低。 
    • Base Model 之间的性能表现不能差距太大。这其实是一个 Trade-off,在实际中很有可能表现相近的Model 只有寥寥几个而且它们之间相关性还不低。但是实践告诉我们即使在这种情况下 Ensemble 还是能大幅提高成绩。参考链接

    stacking融合原理 

DecisonTree 算法原理

  • 构造决策树通常包括三个步骤: 
    • 特征选择
    • 决策树生成
    • 决策树剪枝

伪代码逻辑

Check if every item in the dataset is in the same class:
    If so return the class label
    Else
        find the best feature to split the data
        split the dataset
        create a branch node
        for each split
            call createBranch and add the result to the branch node
    return branch node
  1. 查询传入的数据集是否都为同一类。是,则返回该类标签;否,对该自己进行划分。
  2. 对该自己进行划分后,创建新的节点,将划分后的所有类别添加到决策树中。

特征选择

  • 特征选择目的是选取较强分类特征。特征选取根据划分集合中类别的数据纯度进行判别,常用的衡量节点数据集合的纯度有:信息增益(information gain)、基尼系数和方差

信息熵增益

信息熵的定义: 
- 某个事件 i i的信息量:这个事件发生概率的负对数 

 Ti=−log(P(xi)) Ti=−log(P(xi))

 

  • 信息熵即为信息量的期望值负数: 

     H=∑i=1nH(xi)=−∑i=1nP(xi)log(P(xi)) H=∑i=1nH(xi)=−∑i=1nP(xi)log(P(xi))

     

  • 信息增益:设特征A是离散的,有 k k个不同的取值 a1 a1, a2 a2…… ak ak,根据特征A的取值将数据集D划分为 k k 个标签: D1 D1, D2 D2…… Dk Dk划分后的信息上为 

     Hsplited=∑j=1kP(Dj)H(Dj)=∑j=1klen(Dj)len(D)H(Dj) Hsplited=∑j=1kP(Dj)H(Dj)=∑j=1klen(Dj)len(D)H(Dj)


    信息增益即为连个信息熵的差值: 

     Gainsplited=H−Hsplited Gainsplited=H−Hsplited

     

熵越大,则表示越混乱;熵越小,则表示越有序。因此信息增益表示混乱的减小程度。

增益比率

增益比率是信息增益方法的一种扩展,是为了克服信息增益带来的弱泛化的缺陷。因为在极端情况下每个样本一对一到对应节点是,条件熵为0,此时获得的信息熵是最大的,但这种情况导致了过拟合。 
故,引入引入信息增益比来作为一个更合适的衡量数据划分的标准,即增益比率。 

 SplitInfo(D)=∑j=1klen(Dj)len(D)log(len(Dj)len(D)) SplitInfo(D)=∑j=1klen(Dj)len(D)log(len(Dj)len(D))

 

课件,如果数据划分越多,对应的分裂信息的值也越大。这时候吧分裂信息放到坟墓上变回中和信息增益带来的弊端。

 GianRatio=GainSplitInfo GianRatio=GainSplitInfo

 

决策树生成

典型的决策树生成算法有ID3和C4.5,这两种生成树过程大致相似。不同的是,ID3采用的是信息增益作为特征选取的度量,而C4.5采用的是信息增益比。

C4.5优缺点

  • C4.5算法集成了ID3算法的有点,并在以下几个方面进行了改进: 
    • 采用信息增益率进行属性喧杂而,克服了采用信息增益选择属性偏向取值多的进行选择。
    • 在树构造过程进行剪枝
    • 对连续属性离散化处理
    • 能够对不完整数据进行处理
  • C4.5优点:产生的分类易于理解,准确率较高。
  • C4.5缺点:需对数据集进行多次顺序扫描和排序,导致算法的低效。当训练集大时可能无法运行程序。

分类算法原理

SVM(Support Vector Machine)

训练数据集: 

T={(x1,y1),(x2,y2),⋯,(xN,yN)}T={(x1,y1),(x2,y2),⋯,(xN,yN)}

 

其中,

xi∈X=Rn,yi∈Y={+1,−1},i=1,2,⋯,Nxi∈X=Rn,yi∈Y={+1,−1},i=1,2,⋯,N

 

 xi xi 为第i 个特征向量, yi yi 为第 xi xi的标记,当 yi=+1 yi=+1 则 xi xi为正例;当 yi=−1 yi=−1 则 xi xi为负例。

线性支持可分向量

给定线性可分训练数据集,通过间隔最大化学习的分离超平面为: 

w∗⋅x+b∗=0w∗⋅x+b∗=0


以及相应的分类决策函数为: 

 f(x)=sign(w∗⋅x+b∗) f(x)=sign(w∗⋅x+b∗)

 

超平面 (w,b) (w,b) 关于训练集T的函数间隔为:

γ^i=yi(w⋅xi+b)γ^i=yi(w⋅xi+b)

 

超平面 (w,b) (w,b) 关于训练集T的几何间隔为:

γi=yi(w∥w∥⋅xi+b∥w∥)γi=yi(w‖w‖⋅xi+b‖w‖)

 

函数间隔和几何间隔的关系:

γi=γ^i∥w∥γ=γ^∥w∥γi=γ^i‖w‖γ=γ^‖w‖

 

最大间隔分离超平面可转化为分类问题进行求解:

maxw,bγs.t.yi(w∥w∥⋅xi+b∥w∥)≥γ,i=1,2,⋯,Nmaxw,bγs.t.yi(w‖w‖⋅xi+b‖w‖)≥γ,i=1,2,⋯,N

 

进行等价转换为函数间隔进行约束,简化函数:

maxw,bγ^∥w∥s.t.yi(w⋅xi+b)≥γ^,i=1,2,⋯,Nmaxw,bγ^‖w‖s.t.yi(w⋅xi+b)≥γ^,i=1,2,⋯,N

 

函数间隔 γ^i γ^i并不影响最优化问题的解,为了简化函数,可令 γ^i=1 γ^i=1,将其等价转化为:

minw,b12∥w∥2s.t.yi(w⋅xi+b)−1≥0,i=1,2,⋯,Nminw,b12‖w‖2s.t.yi(w⋅xi+b)−1≥0,i=1,2,⋯,N

 

对上述方程构建拉格朗日乘子 αi≥0,i=1,2,⋯,N αi≥0,i=1,2,⋯,N 

L(w,b,α)=12∥w∥2+∑i=1Nαi[−yi(w⋅xi+b)+1]=12∥w∥2−∑i=1Nαiyi(w⋅xi+b)+∑i=1NαiL(w,b,α)=12‖w‖2+∑i=1Nαi[−yi(w⋅xi+b)+1]=12‖w‖2−∑i=1Nαiyi(w⋅xi+b)+∑i=1Nαi

 

对拉格朗日乘子进行求导,从而求出 x x 最优解: 

∇wL(w,b,α)=w−∑i=1Nαiyixi=0∇bL(w,b,α)=−∑i=1Nαiyi=0∇wL(w,b,α)=w−∑i=1Nαiyixi=0∇bL(w,b,α)=−∑i=1Nαiyi=0

 

可知,进行等价转化: 

w=∑i=1Nαiyixi∑i=1Nαiyi=0w=∑i=1Nαiyixi∑i=1Nαiyi=0

 

带入拉格朗日乘子: 

L(w,b,α)=12∑i=1N∑j=1Nαiαjyiyj(xi⋅xj)−∑i=1Nαiyi[(∑j=1Nαjyjxj)⋅xi+b]+∑i=1Nαi=−12∑i=1N∑j=1Nαiαjyiyj(xi⋅xj)−∑i=1Nαiyib+∑i=1Nαi=−12∑i=1N∑j=1Nαiαjyiyj(xi⋅xj)+∑i=1NαiL(w,b,α)=12∑i=1N∑j=1Nαiαjyiyj(xi⋅xj)−∑i=1Nαiyi[(∑j=1Nαjyjxj)⋅xi+b]+∑i=1Nαi=−12∑i=1N∑j=1Nαiαjyiyj(xi⋅xj)−∑i=1Nαiyib+∑i=1Nαi=−12∑i=1N∑j=1Nαiαjyiyj(xi⋅xj)+∑i=1Nαi

 

线性支持向量机

在线性支持可分向量的基础上引入了了惩罚参数 C C: 

minw,b,ξ12∥w∥2+C∑i=1Nξis.t.yi(w⋅xi+b)≥1−ξiξi≥0,i=1,2,⋯,Nminw,b,ξ12‖w‖2+C∑i=1Nξis.t.yi(w⋅xi+b)≥1−ξiξi≥0,i=1,2,⋯,N

 

每个松弛变量 xii xii都有对应的惩罚代价 Cxii Cxii,这里C>0代表惩罚参数。 
- C值越大,对错误分类点的惩罚度越高,容忍度越低 
- C值越小,对错误分类点的惩罚度越低,容忍度越高

非线性支持向量机

当分类问题难以进行线性分类时,利用高位的核函数将点映射到高维进行划分超平面。 
设 X X是输入空间, H H是特征空间,存在 X X到 H H的映射: 

ϕ(x):X→Hϕ(x):X→H

 

使得对所有 x x, z∈X z∈X, 函数 K(x,z) K(x,z)满足条件:

K(x,z)=ϕ(x)⋅ϕ(z)K(x,z)=ϕ(x)⋅ϕ(z)

 

常用的核函数: 
1. 多项式核函数: 

K(x,z)=(x⋅z+1)pK(x,z)=(x⋅z+1)p

 

  1. 高斯核函数: 

    K(x,z)=exp(−∥x−z∥22σ2)K(x,z)=exp⁡(−‖x−z‖22σ2)

通过核函数和软间隔最大化,学习得到分类决策函数: 

f(x)=sign(∑i=1Nα∗iyiK(x,xi)+b∗)f(x)=sign(∑i=1Nαi∗yiK(x,xi)+b∗)

 

SVM优缺点

  • 优点:本质上是非线性方法,在样本较少时容易抓住数据和特征之间的非线性关系,避免神经网络结构选择和局部极小点问题、可以提高泛化性能、解决高维问题。
  • 缺点:SVM对数据缺失敏感,对于样本数据较多时,复杂度为 O(n2) O(n2),复杂度较高
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值