以下是关于如何使用 OpenVINO™ 来优化 YOLOv11 模型的实际代码示例,包括从 PyTorch 到 OpenVINO IR 格式的转换、优化、推理和性能比较。将逐步展示代码实现,并详细解释每个步骤的操作。
1. 准备 PyTorch 模型
首先,我们需要准备一个 YOLOv11 的 PyTorch 模型。假设你已经从 Ultralytics 获取了 YOLOv11 模型并将其加载到 PyTorch 中。
import torch
from models.common import DetectMultiBackend
# 加载 YOLOv11 模型
model = DetectMultiBackend(