终于!疫情之下,第一批企业没能熬住面临倒闭,员工被遣散,没能等来春暖花开!

先来看一个图:file

这个春节,我同所有人一样,不仅密切关注这次新型肺炎,还同时关注行业趋势和企业。在家憋了半个月,我选择给自己看书充电。因为在疫情之后,行业竞争会更加加剧,必须做好未雨绸缪,时刻保持充电。

file

看了今年的情况,突然想到大佬往年经典语录:

  • 马云:未来无业可就,无工可打,无商可务
  • 李彦宏:人工智能时代,有些专业将被淘汰,还没毕业就失业
  • 马化腾:未来3年将大洗牌,迎21世界以来最大失业潮
  • 王兴:2019年是十年内最惨的一年,也是十年后最好的一年
  • 李开复说:“未来10年,50% 的人将要失业”

大家怎么看待大佬们的夸张语录…难道真是预言家?

1、风暴来临时,不是拼谁强大,而是拼谁稳

2月6日晚间,知名IT培训机构「兄弟连教育」创始人李超,在其微信公众号中发表《致兄弟连全体学员、员工、股东的一封信》,表示因受疫情影响,即日起,兄弟连北京校区停止招生,员工全部遣散。消息一出,立马刷屏了,兄弟连教育早期是做PHP培训,成立于2006年。专注于IT技术培训,是国内早及大的PHP/LAMP技术专业培训学校。2015年,兄弟连获得华图1.25亿战略投资;2016年11月挂牌新三板,2018年4月25日终止挂牌。file

公司原计划在2020春节后招生旺季打一个翻身战,但疫情将公司计划全部打乱。最终输给了这场突如起来的疫情。这个黑天鹅,让他们最后一根救命稻草被压跨。

2、现金流将影响一个公司的全年

与此同时,完全依靠人流量的线下餐饮行业,更是受到影响。西贝CEO贾国龙,此前表示面临非常大现金流压力,一算账,连3个月都扛不过去。

根据研究机构弗若斯特沙利文的统计,在2018年中国西北菜餐厅排名中,西贝筱面村位居第一,年收入超53亿元。但在疫情袭来之后,西贝餐饮副总裁楚学友透露了几个数据:

截止到2019年底,西贝在全国有367家店,只有45家店在正常营业,195家店开放了外卖业务,剩余127家店全部闭店。

贾国龙说:"我们一个月工资发1.56个亿,两个月就三个多亿,三个月就四五个亿了。哪个企业储备那么多现金流?"他只能无奈地承认,"危机来了,突然发现现金流根本扛不住,一算账,真的,我们连3个月都扛不过去。"

作为行业头部的西贝都已经到如此境地,更不用说其他中小餐饮企业面对的压力和危机。file

有些人觉得中小餐饮企业虽然收入比西贝要少的多,那成本也应该低多了,不会面临倒闭或破产。

事实上,不管是龙头企业还是中小企业,餐饮行业的成本,本就是居高不下的。而大企业因为有口碑背书,在贷款、政府支持等方面,反而有一些得天独厚的优势,像西贝现在还能够通过贷款拿到上亿元的资金。(PS:据最新消息,2月6日,浦发银行北京分行即完成核批西贝餐饮授信额度5.3亿元,次日通过远程线上核保、签署保证合同后,浦发银行即落地1.2亿元流动资金贷款,入账西贝餐饮集团)

一位不愿透露店铺名的老板表示,自己春节前为店铺进货食材十几万,现在不能营业被大量退单,食材也保存不了很久,加上后面每个月员工工资有十几万,房租十几万,林林总总一加五十多万,再往下三个月都不敢想。

那这些中小企业的未来在哪里呢?他们如何度过这次危机,如何在“疫情寒冬”中安然存活下来?所以这时候企业caiyuan也是迫不得已。但是给员工赔偿需要到位。

3、裁员,此时是无奈之举、员工赔偿要到位

2月5日,公号秦子帅发表名为一篇《疫情下,我被裁了》,让技术圈一阵唏嘘。主人公从事Android开发,在还没正式上班(2.10)前,就通知被cai了。主人公表示:2月4日,公司下达了通知,基本上所有试用期员工全清,又劝退了一些正式员工。

file

2月7日,北京知名KTV“K歌之王”发布了《总经理致全体员工的一封信》。信中称:“正当我们充满信心的准备在2020年重新展翅之际,威胁中国大江南北的疫情却突然出现。”

file

受疫情影响,K歌之王宣布将于2月9日(今天),也就是北京市准备正式上班的前一天,与全部员工、200多名员工解除劳动合同,如果有30%员工不同意这个方案,公司将进行破产清算。

4、延迟复工再通知,企业在滴血

与此同时,企业再次延期复工。阿里:原定于10号开始的正常办公的阿里,将会至少延后一周或以上,具体时间待定。

file

腾讯:2月9日(今天),腾讯再发通知,员工延长至2.24日返回工作场所地办公。

file

字节跳动:2月26日-3月1日上班,2月12日-2月16日返京(再隔离14天回公司上班)美团:2月10日-2月14日在家办公,2月17日返岗上班IBM:3月中旬上班,办公任务:在家照顾好自己和家人而对于延期复工,不同人群的不同反应如下:

00后:开黑继续,别走,决战到天亮……

95后:延迟一时爽,一直延迟一直爽;

90后:延迟上班没钱花?信用卡花呗一起刷;

80后:上有老下有小,房贷车贷等着还,闹心;

70后:命比钱重要,暂时吃老本,在家修身养性;

实体店老板:越延迟,越损失惨重,泪两行,无处话凄凉……

5、硝烟会过去,待春暖花开,相约再次出发

小编想说的是,即使疫情严峻,市场竞争剧烈,但是只要我们时刻保持充电。同别人拉开差距,风暴来临时,拼的不是谁强大,而是谁站的稳。

  • 1、锻炼身体,编程是个体力活,除了拼技术,更要拼的是身体。
  • 2、关注趋势,比闭门造车更重要。
  • 3、多和行业更高阶的人交朋友,交流经验学习,更高阶的人可以点拨你,可以避免不必要的坑。
  • 4、提高对自己要求,永远比岗位要求高一个段位,才能不断进阶下一个段位。
  • 5、跳3个职级思考问题。开始有点难,慢慢你就能和别人与众不同。

明天就办公了,大家有什么想说的呢?欢迎留言。

欢迎关注我的微信公众号「码农突围」,分享Python、Java、大数据、机器学习、人工智能等技术,关注码农技术提升•职场突围•思维跃迁,20万 码农成长充电第一站,陪有梦想的你一起成长。

### Swin Transformer 论文精读:Hierarchical Vision Transformer Using Shifted Windows Swin Transformer 是一种基于视觉的分层 Transformer 模型,其核心创新在于通过 **Shifted Window-based Self-Attention** 实现了线性计算复杂度,同时能够生成多尺度特征表示。这种方法在图像分类、目标检测和语义分割等任务中取得了显著的性能提升 [^2]。 #### 核心架构概述 Swin Transformer 的整体结构分为多个阶段(Stage),每个阶段包含多个 Swin Transformer Block。这些块使用 **窗口化自注意力机制** 和 **移位窗口策略** 来实现高效计算并捕捉长距离依赖关系。 - **分层特征提取** 类似于传统卷积神经网络(如 ResNet),Swin Transformer 采用分层设计来逐步降低空间分辨率并增加通道维度。这种设计允许模型从局部到全局地构建特征表示。 - **窗口划分与移位窗口机制** 在每个 Swin Transformer Block 中,输入特征图被划分为不重叠的窗口,并在这些窗口内执行自注意力计算。为了增强跨窗口的信息交互,在下一个 Block 中对窗口进行移位操作(Shifted Windows)。这种方式既减少了计算量,又保持了模型对全局信息的感知能力 [^1]。 ```python # 窗口划分伪代码示例 def window_partition(x, window_size): B, H, W, C = x.shape # 将图像划分为多个窗口 x = tf.reshape(x, shape=[B, H // window_size, window_size, W // window_size, window_size, C]) windows = tf.transpose(x, perm=[0, 1, 3, 2, 4, 5]) return tf.reshape(windows, shape=[-1, window_size, window_size, C]) # 移位窗口伪代码 def shifted_window_attention(x, window_size, shift_size): B, H, W, C = x.shape # 对特征图进行滚动操作以实现窗口移位 x = tf.roll(x, shift=(-shift_size, -shift_size), axis=(1, 2)) return window_partition(x, window_size) ``` #### 自注意力机制优化 传统的 Vision TransformerViT)在整个图像上应用自注意力机制,导致计算复杂度为 $O(n^2)$,其中 $n$ 是图像块的数量。而 Swin Transformer 通过将注意力限制在局部窗口内,将复杂度降低到 $O(n)$,使其适用于高分辨率图像处理 [^4]。 此外,移位窗口机制确保了相邻窗口之间的信息流动,从而避免了局部注意力带来的信息隔离问题。这种设计使得 Swin Transformer 能够在保持计算效率的同时实现全局建模能力。 #### 实验结果与性能优势 Swin Transformer 在多个视觉任务中表现出色: - **ImageNet 分类任务**:Swin-Tiny、Swin-Small、Swin-Base 和 Swin-Large 四种变体均在 ImageNet-1K 上实现了优于其他 Transformer 主干网络的 Top-1 准确率。 - **COCO 目标检测**:在 COCO 数据集上,Swin Transformer 在 Faster R-CNN 框架下达到了 SOTA 性能,mAP 超过之前的最佳方法。 - **ADE20K 语义分割**:在 ADE20K 数据集上,Swin Transformer 作为编码器也取得了领先的 mIoU 指标 [^2]。 #### 消融实验分析 论文还进行了详细的消融研究,验证了以下几个关键组件的有效性: - **窗口大小的影响**:较大的窗口有助于捕捉更广泛的上下文,但会增加计算开销。 - **移位窗口的重要性**:实验证明,移位机制可以显著提升模型性能,尤其是在长距离依赖任务中。 - **不同层级的设计**:通过对比不同层级深度和通道配置,论文展示了如何平衡精度与效率 [^3]。 ---
评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值