ShuffleNet 改进:与通道注意力机制(CAM)的结合实现

1.创新点分析

引言

在计算机视觉领域,轻量级神经网络和注意力机制是两个非常重要的研究方向。

本文将详细解析一个结合了ShuffleNetV2和通道注意力机制(CAM)的PyTorch实现代码,帮助读者理解如何将这两种技术有效地结合起来。

代码概述

这段代码实现了一个改进版的ShuffleNetV2模型,通过添加通道注意力模块(CAM)来增强模型的特征表示能力。主要包含以下几个部分:

  1. ​CAM模块​​:实现通道注意力机制
  2. ​ShuffleNetV2_CAM类​​:修改后的ShuffleNetV2模型,集成了CAM模块
  3. ​create_model函数​​:模型创建接口
  4. ​测试代码​​:验证模型的正向传播

通道注意力模块(CAM)详解

class CAM(nn.Module):
    def __init__(self, in_channels, reduction_ratio=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

听风吹等浪起

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值