SwinTransformer 改进:结合DLKA与SSPP的模型架构

1.创新点设计

引言

在计算机视觉领域,Transformer架构近年来取得了巨大成功,逐渐取代了传统的CNN模型。

本文将深入解析一个结合了Swin Transformer、动态大核注意力(DLKA)和空间金字塔池化(SSPP)的创新模型架构。这个设计巧妙地融合了Transformer的自注意力机制与CNN的局部特征提取能力,为图像分类任务提供了强大的解决方案。

模型架构概览

该模型的核心是基于Swin Transformer构建,并加入了两个关键模块:

  1. DLKA (Dynamic Large Kernel Attention):动态大核注意力模块,增强局部特征提取能力

  2. SSPP (Spatial Pyramid Pooling):空间金字塔池化模块,提升多尺度特征融合能力

核心组件详解

1. DLKA模块:动态大核注意力

class DLKA(nn.Module):
    def __init__(self, in_channels, reduction_ratio=4):
        super(DLKA, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

听风吹等浪起

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值