0. 简介
MCP(Model Context Protocol,模型上下文协议)是由Anthropic公司开发的开放标准,旨在简化AI助手与外部数据源和工具的集成,特别是针对大型语言模型(LLMs)。MCP解决了AI开发中的一个常见挑战:需要定制的一次性集成,将AI系统与各种平台和数据存储库连接起来。它提供了一个通用的标准化框架,使AI应用程序能够安全高效地访问和与各种系统(如Google Drive、Slack、GitHub甚至本地文件)交互。
简单来说,有了MCP,大语言模型可以:
- 应对更复杂的场景
- 处理更现实的情况
- 拥有更强大的能力
- 操作更多的工具
- 减少凭空产生的幻觉
- 更高效地沟通外部数据
1. MCP的技术原理
MCP的核心是一种标准化的通信协议,允许AI模型通过定义良好的接口与外部系统进行交互。它包括以下关键组件:
- MCP服务器:实现协议的服务器,提供对特定资源或工具的访问
- MCP客户端:能够与MCP服务器通信的AI应用程序
- 资源和工具:服务器暴露给AI的功能,如文件访问、API调用等
- 安全机制:确保AI只能访问授权的资源
MCP采用基于HTTP的通信模式,使用结构化的JSON格式进行数据交换,并通过Server-Sent Events (SSE)实现实时通信。这使得AI模型能够以安全、可控的方式与外部世界交互。
2. 官方文档资源
如果您想深入了解MCP的技术细节,可以访问以下官方资源:
- Introduction - Model Context Protocol
- Introducing the Model Context Protocol \ Anthropic
- Model Context Protocol (MCP) Powered by Github
3. MCP Servers 网站资源
以下是一些提供MCP服务器信息和资源的重要网站:
3.1 Model Context Protocol servers
这是MCP官方的服务器实现库,包含了多种标准化的MCP服务器实现,为开发者提供参考和基础设施。
3.2 PulseMCP | Keep up-to-date with MCP
PulseMCP是一个专注于MCP最新动态的资源网站,提供新闻、更新和教程,帮助开发者跟踪MCP生态系统的发展。
3.3 Awesome MCP Servers
这是一个综合性的MCP服务器目录,列出了各种可用的MCP服务器实现,按功能和类别进行分类,方便开发者查找适合自己需求的服务器。
3.4 Smithery - Model Context Protocol Registry
Smithery是一个MCP服务器注册中心,允许开发者发布和发现MCP服务器,促进生态系统的增长和协作。
3.5 Open-Source MCP servers | Glama
Glama提供了开源MCP服务器的集合,重点关注社区贡献的实现和创新解决方案。
3.6 Cursor Directory - Cursor Rules & MCP Servers
Cursor Directory专注于与Cursor编辑器集成的MCP服务器,提供针对编码和开发工作流优化的解决方案。
4. MCP服务器使用教程
以下是一些帮助您开始使用MCP的实用教程:
5. MCP生态系统详解
MCP服务器根据其功能和用途可以分为多个类别,下面我们将详细介绍一些主要类别和代表性的实现:
5.1 浏览器自动化
这类MCP服务器允许AI模型控制和交互Web浏览器,实现网页抓取、内容分析和自动化操作:
- playwright-plus-python-mcp:使用Playwright进行浏览器自动化,专为LLM优化
- mcp-server-playwright:提供网页抓取和浏览器控制功能
- server-puppeteer:官方实现的网页交互和抓取工具
5.2 数据库集成
这些服务器使AI能够查询、分析和管理各种数据库系统:
- mcp-server-bigquery:连接Google BigQuery,进行大规模数据分析
- server-postgres:与PostgreSQL数据库集成,支持SQL查询和模式分析
- mongodb-lens:提供MongoDB数据库访问功能
- mcp-server-duckdb:轻量级分析型数据库DuckDB的集成
5.3 文件系统访问
允许AI访问和管理本地或云端存储的文件:
- server-filesystem:官方实现的本地文件系统访问
- server-google-drive:与Google Drive集成,支持文件列表、读取和搜索
- box-mcp-server:Box云存储集成
5.4 开发者工具
增强AI在软件开发过程中的能力:
- docker-mcp:允许AI管理Docker容器
- openapi-mcp-server:通过OpenAPI规范连接任何REST API
- mcp-text-editor:针对LLM优化的文本编辑工具
5.5 版本控制系统
使AI能够与代码仓库和版本控制平台交互:
- server-github:GitHub API集成,支持仓库管理、PR处理等
- server-gitlab:GitLab平台集成
- mcp-gitee:面向中国开发者的Gitee平台集成
5.6 搜索和知识访问
让AI能够搜索互联网或特定知识库:
- server-brave-search:使用Brave的搜索API实现网页搜索
- exa-mcp-server:集成Exa AI Search API
- mcp-server-tavily:提供Tavily AI搜索功能
5.7 知识与记忆系统
提供长期记忆和知识管理能力:
- server-memory:基于知识图谱的长期记忆系统
- MemoryMesh:增强基于图形的记忆,适用于角色扮演和故事生成
- mcp-ragdocs:通过向量搜索实现文档检索和处理
6. 如何开始使用MCP
对于想要开始使用MCP的开发者,以下是一个基本的步骤指南:
-
选择合适的MCP客户端:如Cursor编辑器、Claude桌面应用等支持MCP的客户端
-
安装并配置MCP服务器:根据您的需求选择一个或多个MCP服务器
# 克隆MCP服务器仓库 git clone https://github.com/modelcontextprotocol/servers.git # 进入所需服务器目录 cd servers/src/filesystem # 安装依赖 npm install # 启动服务器 npm start
-
连接客户端与服务器:配置客户端使用您安装的MCP服务器
-
开始使用增强功能:通过客户端与AI交互,使用新增的工具和能力