自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(871)
  • 资源 (9)
  • 收藏
  • 关注

原创 具身智能操作知识梳理与拓展

NPY: NumPy原生格式,存储单个数组或字典TFDS: TensorFlow Datasets格式,用于TensorFlow生态系统RLDS: Robotics Language-conditioned Dataset,机器人任务数据集HDF5: 分层数据格式,支持大型复杂结构化数据。

2025-04-23 13:54:52 6393 1

转载 强化学习的几个主要方法(策略梯度、PPO、REINFORCE实现等)---下

策略梯度算法在理想情况下,在采样次数足够多的情况下效果是能很不错的,但是当采样不够时就会出现一些问题,例如GtG_tGt​的取值是很不稳定的,下图可以形象说明:由于GtG_tGt​的取值不稳定,所以(st,at)(s_t, a_t)(st​,at​)更新也不稳定。由于GGG的值有点太不稳定太玄学了,因此我们可以想办法去用一个神经网络去预测在sss状态下采取行动aaa时对应的GGG期望值,之后再训练中我们就直接用这个期望值去替代采样的值。为了完成这个目的,我们可以使用基于价值的方法深度Q网络,深度Q网络有两种

2025-01-22 15:23:34 5475

转载 强化学习的几个主要方法(策略梯度、PPO、REINFORCE实现等)---上

策略梯度算法在理想情况下,在采样次数足够多的情况下效果是能很不错的,但是当采样不够时就会出现一些问题,例如GtG_tGt​的取值是很不稳定的,下图可以形象说明:由于GtG_tGt​的取值不稳定,所以(st,at)(s_t, a_t)(st​,at​)更新也不稳定。由于GGG的值有点太不稳定太玄学了,因此我们可以想办法去用一个神经网络去预测在sss状态下采取行动aaa时对应的GGG期望值,之后再训练中我们就直接用这个期望值去替代采样的值。为了完成这个目的,我们可以使用基于价值的方法深度Q网络,深度Q网络有两种

2025-01-22 15:21:31 5415

转载 看完这篇文章,我终于搞懂了 CMake,真香!(高级篇补充)

不要硬编码路径用相对路径,让用户通过文件会安装到和。更灵活,无需管理员权限,跨平台也好用!如果有一些头文件没有实现(比如接口、纯抽象类),可以用INTERFACE接口库(INTERFACE)用于配置一些公共的链接和编译选项,小型项目可能用得少,大型项目常见。CMake 是个强大的工具,但要用得好,还是需要一些技巧和经验。包管理和安装配置:重点是让你的库好用、易装。

2025-01-10 18:25:58 7843

转载 聊聊端到端自动驾驶通用感知架构的前世今生

这张图演示的是相关方法的演进。这其中大部分都是基于BEV的方法,上图就是BEV-based相关方法的相关演进, 用某种方式将图像视角特征转到BEV特征空间,也就是一个高度方向拍扁的自车3D坐标系空间下,再用一个检测的Head实现目标检测。BEV这张图的尺寸通常比较大,比如一般常见的论文里面会用128×128 size,但在实际中,我们甚至会用两倍大小的BEV特征图。从图像特征空间向BEV层空间转换过程,是一个非常密集的计算过程。

2024-10-23 10:33:10 5012

转载 空间坐标(系)如何进行变换?

要描述某一物体在现实场景的位置,通常以三维空间坐标系下的坐标进行说明,当物体位置或自身进行变化时,可以用放射变换说明物体的变化情况。根据现实情况,坐标系和物体可以相互描述,即二维平面坐标(系)变换的情况包括一个二维平面坐标系描述一个物体(坐标)变换情况和一个物体(坐标)在两个二维平面坐标系间的变换情况。根据现实情况,坐标系和物体可以相互描述,即三维空间坐标(系)变换的情况包括一个三维空间坐标系描述一个物体(坐标)变换情况和一个物体(坐标)在两个三维空间坐标系间的变换情况。[3] 你不来我不老.

2024-09-04 10:45:26 2335

原创 Clion 使用

默认情况下,CLion编译使用的CMake是其内置的一个版本,而使用这个版本的CMake进行编译时会报出一些莫名其妙的错误,命令行中catkin_make明明可以正常编译,而这里就是会失败。回到一开始的"Threads & Variables"窗口,左上角有一些控制按钮,从左到右依次是:Rerun(Ctrl+F5),Stop(Ctrl+F2),Resume(F9),Pause(暂时用不上),Step Over(F8),Step Into(F9),Step Out(Shift+F8)。

2024-08-31 16:21:38 10710

转载 IMU preintegration on manifold 学习笔记(一)

Posted on 2023-02-18 Edited on 2024-07-11 In vslam Views:ω∧=[ω_1ω_2ω_3]∧=[0−ω_3ω_2ω_30−ω_1−ω_2ω_10]=WW∨=[0−ω_3ω_2ω_30−ω_1−ω_2ω_10]∨=[ω_1ω_2ω_3]=ω\mathbf{\omega}^{\wedge}=\begin{bmatrix}\omega\_1\\ \omega\_2\\ \omega\_3\end{bmatrix}^{\wedge}=\begin{bmatrix}

2024-07-12 12:10:41 3703

原创 CMakeList整理大全

之前我们也整理过。但是这里面整理的内容其实是不全的。所以我们需要进一步将CMake的使用整理好。以供后面的学习的工程师来检索查询。

2024-04-29 14:41:26 19259

原创 C++ CPU程序占用率高问题排查

我们在之前介绍了使用Valgrind、perf、AddressSanitzer等工具来完成内存泄漏的检测,当然内存泄漏以外还有cpu的占用率变高这类问题。作者在这里提供几个方法来对C++程序中CPU程序占用率高问题排查。

2023-12-29 13:14:36 8986

转载 Linux中.a、.so和.o文件以及-I,-L,LIBRARY_PATH,LD_LIBRARY_PATH等

(3) 修改/etc/ld.so.conf文件,把库所在的路径加到文件末尾(直接写在文件末尾,不要在路径前加include),并执行ldconfig刷新(ldconfig 命令的用途,主要是在默认搜寻目录(/lib和/usr/lib)以及动态库配置文件/etc/ld.so.conf内所列的目录下,搜索出可共享的动态链接库(格式如前介绍,lib*.so*),进而创建出动态装入程序(ld.so)所需的连接和缓存文件.缓存文件默认为/etc/ld.so.cache,此文件保存已排好序的动态链接库名字列表.)。

2023-08-16 17:14:24 3868

原创 SLAM本质剖析番外-李群李代数的微分和导数

这几个月,博主已经从SLAM算法的使用向着算法的数学推导进行了记录和分享,之前也分享了一文,从现象中解释了李群和李代数表达的含义。但是这还不够,所以这次作者作为SLAM本质剖析的番外,来介绍李群李代数的微分和导数。

2023-01-16 16:10:19 11397 2

转载 undefined symbol问题的查找、定位与解决方法

而这块可以看到fpdf_parse_encrypt是依赖于下边的fx_crypt文件的,再看静态库,fpdf_parse_encrypt被编译成fpdfapi.a,而fx_crypt被编译进pdrm.a静态库,所以应该是fpdfapi.a要依赖于pdrm.a静态库的。ldd命令,可以查看对应的可执行文件或库文件依赖哪些库,但可执行文件或库文件要求与操作系统的编译器类型相同,即电脑是X86的GCC编译器,那么无法通过ldd命令查看ARM交叉编译器编译出来的可执行文件或库文件。

2022-12-14 14:53:39 11301 4

原创 自动驾驶-激光雷达预处理/特征提取

激光雷达作为自动驾驶最常用的传感器,经常需要使用激光雷达来做建图、定位和感知等任务。而这时候使用降低点云规模的预处理方法,可以能够去除无关区域的点以及降低点云规模。并能够给后续的PCL点云分割带来有效的收益。

2022-08-24 21:12:44 4992 2

原创 C++之生成器(builder)模式

0. 简介生成器是一种创建型设计模式, 当构建一个复杂对象时,将构建过程与表示分离。使得同样的过程创建不同的对象。生成器与其他创建型模式不同, 生成器不要求产品拥有通用接口。 这使得用相同的创建过程生成不同的产品成为可能。生成器方法通常支持方法链 (例如 someBuilder->setValueA(1)->setValueB(2)->create() ),来组成复杂的对象。相比于工厂模式专门用于生产一系列相关对象而言,生成器重点关注如何分步生成复杂对象。1. 生成器UML介绍生

2022-03-07 10:38:52 9661 4

原创 C++命名规则&书写规范

常见命名法:匈牙利命名法:基本原则是:变量名=属性+类型+对象描述\color{blue}{变量名=属性+类型+对象描述}变量名=属性+类型+对象描述,其中每一对象的名称都要求有明确含义,可以取对象名字全称或名字的一部分。命名要基于容易记忆容易理解的原则。保证名字的连贯性是非常重要的。Camel命名法:即骆驼式命名法,原因是采用该命名法的名称看起来就像骆驼的驼峰一样高低起伏。Camel命名法有两种形式:混合使用大小写字母和单词之间加下划线\color{blue}{混合使用大小写字母和单词之间加下划线}混

2021-05-12 10:42:19 6100 2

原创 Latent Action在具身智能中的使用

摘要:基于自监督的机器人潜在动作学习框架 本文提出了一种利用互联网视频数据进行机器人动作学习的创新方法。核心思想是通过自监督学习从大量视频中提取潜在动作表示,而非依赖昂贵的人工标注数据。系统框架分为三个阶段:首先使用VQ-VAE对视频帧间的动作进行离散化编码;然后在预训练阶段让视觉语言模型理解这些潜在动作;最后用少量真实机器人数据微调模型。这种方法突破了传统需要大量标注数据的限制,通过潜在动作空间作为桥梁,将人类视频中的行为知识迁移到机器人控制领域。实验表明,该方法训练效率比传统方法高30倍,并在多个任务上

2025-08-06 13:54:48 1129

原创 深度学习中的预训练模型加载与微调指南

本文介绍了深度学习中使用预训练模型的实用方法,包括三个核心模块:1) 加载自有预训练模型的类PretrainedModelLoader;2) 加载PyTorch内置模型(如ResNet)的ResNetLoader类,支持参数迁移;3) 模型微调工具ModelFinetuner类,可冻结指定层并生成优化器。此外提供了CustomResNet类用于自定义模型结构,以及ModelTrainer类简化训练流程。这些模块化设计以类形式组织代码,便于复用和维护,能有效提升开发效率,适用于迁移学习和微调场景。

2025-08-06 13:53:38 512

原创 Micro XRCE-DDS 中间件整理以及通信

eProsima Micro XRCE-DDS实现了DDS-XRCE协议,为资源受限设备(如微控制器)提供了与DDS网络通信的能力。该系统采用客户端/服务器架构,包含轻量级客户端和代理服务器组件。PX4已集成uXRCE-DDS中间件,通过串行或UDP链路实现PX4与ROS2的无缝通信。安装方法包括独立安装代理(通过源码或Snap包)、客户端以及代码生成工具Micro XRCE-DDS-Gen,支持Linux和Windows平台。该系统广泛应用于无人机、机器人等领域,实现嵌入式系统与DDS/ROS2生态的高效

2025-08-06 13:53:07 1108

原创 Pytorch 张量数据索引切片与维度变换操作大全

本文介绍了使用PyTorch构建和训练神经网络的基本流程。主要内容包括:1) 导入PyTorch核心库;2) 创建自定义数据集类并实现数据增强;3) 定义CNN网络结构;4) 设置优化器和损失函数;5) 训练与评估模型的方法;6) 模型保存与加载;7) GPU加速和TensorBoard可视化;8) 学习率调整技巧;9) 预训练模型应用和迁移学习方法。文中提供了完整的代码示例,涵盖了数据预处理、模型构建、训练优化等关键环节,展示了PyTorch在深度学习中的典型应用。

2025-08-06 13:52:50 873

原创 使用 Ninja/bazel 生成器进行高效构建

本文介绍了使用 CMake 和 Ninja 进行高效构建的方法,以及 Bazel 构建系统的基本使用。主要内容包括:1) Ninja 的安装与配置方法(支持 Linux/macOS/Windows);2) CMake 项目如何通过 -G Ninja 参数切换为 Ninja 构建系统;3) 优化构建配置的技巧(多线程编译、调试输出、ccache 缓存);4) Bazel 的两种安装方式(apt 安装和源码编译)及其在 C++ 项目中的应用,包括 WORKSPACE 和 BUILD 文件的配置。两种构建工具均支

2025-08-06 13:52:31 1077

原创 ISAAC SIM安装与软件实践学习(三)---开发工具与Omnigraph代码开发

本文介绍了如何在Isaac Sim中实现高效开发调试的两种方法:1)通过VS Code扩展实现与Isaac Sim的联动调试,详细说明了环境配置和测试流程;2)深入讲解了OmniGraph的Python脚本接口使用方法,包括在VS Code中的调试配置技巧、断点设置和变量检查等功能。文章提供了具体的代码示例和配置文件修改指引,帮助开发者在Isaac Sim环境中实现更便捷的Python/C++脚本开发和调试。

2025-08-06 13:51:56 1074

原创 ISAAC SIM安装与软件实践学习(二)---用户界面与工作流程

本文介绍了Omniverse Isaac Sim的用户界面和工作流程。主要内容包括:1)基础物体属性设置与操作(移动、旋转、缩放);2)Stage面板的使用与层级关系管理;3)工作区自定义配置;4)三大工作流程:GUI操作、扩展开发和代码调用。文章通过实例演示了立方体的基本操作、父子关系建立方法,并详细说明了视口导航快捷键。同时对比了GUI、扩展(支持热重载)和代码编写三种开发方式的特点和应用场景,为使用者提供了全面的入门指导。

2025-08-06 13:51:38 818

原创 ISAAC SIM安装与软件实践学习(一)---安装和结构梳理

本文介绍了Isaac Sim和Isaac Lab机器人仿真平台的安装与使用入门。主要内容包括:1)在Ubuntu 20.04环境下通过脚本一键安装Isaac Lab;2)Isaac Sim的核心功能与架构解析,重点说明其基于USD格式的场景构建能力、资产导入工具链(支持URDF、MJCF等格式)以及物理仿真设置流程;3)平台提供的三大关键API接口(IsaacSim API、USD API和GUI API)。文章还详细阐述了从几何体创作到场景设置的完整工作流,包括物理属性添加、碰撞检测配置等关键技术要点,为

2025-08-06 13:51:17 1151

原创 从扩散模型来讨论在具身智能的潜力与发展

摘要 本文介绍了扩散模型(Diffusion Model)的基本原理及其在图像生成领域的应用。作者通过对比生成对抗网络(GAN)和变分自编码器(VAE)等传统生成模型,指出扩散模型通过多步去噪过程实现更稳定的图像生成效果。文章详细解析了去噪扩散概率模型(DDPM)的工作机制,包括前向加噪过程和逆向去噪过程。其中,逆向过程通过训练深度神经网络来预测并去除高斯噪声,逐步还原原始图像。文中还提供了相关代码实现和训练过程的说明,包括时间步采样、噪声添加等关键步骤,并推荐了多个学习资源。扩散模型因其生成图像的高质量和

2025-08-06 13:50:46 1459

原创 AutoWare底盘通信全解(一)

差分信号又称差模信号,与传统使用单根信号线电压表示逻辑的方式有区别,使用差分信号传输时,需要两根信号线,这两个信号线的振幅相等,相位相反,通过两根信号线的电压差值来表示。相对于单信号线传输的方式,使用差分信号有以下优点传输抗干扰能力强,当外界存在噪声干扰时,几乎会同时耦合到两条信号线上能够抑制它对外部的电磁干扰,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断。

2025-08-06 13:49:56 998

原创 使用CMake配置文件简化库的导入

本文介绍了如何为C++库创建CMake配置文件,以便用户能方便地通过find_package()命令导入库。通过一个几何库示例,展示了如何配置CMakeLists.txt文件来生成版本配置文件和目标文件,其中关键步骤包括:使用install(EXPORT)导出目标、write_basic_package_version_file()创建版本文件,以及编写自定义配置文件。文章还提供了构建和安装库的具体命令,并解释了生成的geoTargets.cmake文件的作用,该文件用于在其他项目中导入和使用该库。这种方法

2025-08-06 13:49:07 786

原创 GPT-OSS 与 Ollama 完整安装使用教程

摘要: UCloud旗下Compshare算力共享平台提供高性价比的4090/3090 GPU算力资源,支持灵活计费与独立IP,注册即赠20元算力金。OpenAI近期开源的gpt-oss系列大模型(20B/120B参数)采用MoE架构,支持128K上下文,性能接近商业版本。本文详细介绍了通过Ollama工具部署gpt-oss模型的步骤,包括环境配置、模型下载及自定义优化,并推荐使用Compshare的云算力(4090低至1.88元/时)加速推理任务。附平台镜像链接可一键部署,助力AI开发与本地化应用。 (字

2025-08-06 13:13:46 1643 1

原创 经典文献阅读之--CityWalker(从大规模网络视频中学习具身城市导航)

摘要: 《CityWalker》提出了一种基于大规模网络视频的具身城市导航方法,通过视觉里程计从数千小时的行走和驾驶视频中提取动作监督,实现无需人工标注的模仿学习。该方法利用Transformer架构处理观测和位置信息,结合特征幻觉和方向误差损失优化策略,显著提升了动态城市场景中的导航性能。实验表明,跨领域训练(行走+驾驶数据)能进一步增强泛化能力,为自主代理(如配送机器人)提供了可扩展的解决方案。代码已开源。

2025-08-03 18:30:58 1039

原创 经典文献阅读之--ViNT(视觉导航的基础模型)

为此,我们提出了视觉导航变换器(Visual Navigation Transformer,ViNT):一个具有强大零样本泛化能力的跨形态基础模型,用于视觉导航。我们训练。

2025-08-03 18:20:37 1041

原创 AI自动化PPT生成技术深度解析:从算法到工程实践的完整技术路径

【摘要】AI技术正在革新传统PPT制作流程,通过自然语言处理、计算机视觉等技术实现自动化生成。系统采用分层架构设计,包括用户交互层、AI处理层、模板引擎层和渲染输出层,支持微服务扩展和云原生部署。核心技术包含SVG渲染引擎、流式数据处理(基于SSE协议)以及多模型融合的NLP算法。当前35%用户对AI个性化体验有需求,技术成熟度已接近商用标准,显著提升了内容生成效率与设计质量,但仍需优化复杂场景下的逻辑连贯性与视觉一致性。

2025-07-16 09:48:33 2768

原创 ROS通信技术深度解析:485、CAN、I2C、Serial在工业自动化中的应用

本文探讨了工业4.0背景下ROS系统与工业通信协议的集成应用,重点分析了RS485协议在ROS中的实现方法。文章首先介绍了RS485的差分信号传输、总线拓扑等核心特性,然后详细阐述了硬件接口配置环节,包括USB-RS485转换器的识别与udev规则设置。在Modbus RTU通信实现部分,通过代码实例展示了ROS节点如何初始化Modbus上下文、配置定时数据读取以及处理控制指令。全文结合工业自动化实际需求,为开发者提供了从硬件连接到软件开发的完整技术方案,特别强调了RS485网络的终端电阻配置和电气隔离等工

2025-07-16 09:48:16 2719

原创 Claude Code深度体验:重新定义AI辅助编程的边界

Claude Code:AI驱动的智能编程工具革新开发方式 Claude Code是Anthropic推出的命令行智能编程工具,通过底层架构设计提供强大的代码理解和生成能力。该工具具有三大核心优势:底层访问能力可直接操作系统资源,高度灵活性支持定制化配置,以及多层安全防护机制确保操作安全。其功能模块覆盖代码生成、文件管理、版本控制、测试调试等完整开发流程,并能通过MCP协议集成外部服务。 安装需Node.js环境,通过npm全局安装后完成OAuth认证。独特的权限系统通过配置文件管理不同操作权限,支持沙箱模

2025-07-16 09:47:51 3601

原创 Mongoose网络库深度解析:从单线程到多线程的架构演进

Mongoose是一个轻量级、跨平台的C/C++网络库,采用单线程事件循环模型,支持HTTP、WebSocket、MQTT等多种协议。其核心设计理念强调简单易用,仅需两个文件即可集成到项目中。库内置连接管理器和事件回调机制,通过非阻塞I/O处理高并发网络请求,特别适合资源受限的嵌入式环境。Mongoose解决了C/C++网络编程中的跨平台兼容性问题,避免了复杂的依赖管理,显著提升了开发效率。该库的事件驱动架构自动管理连接生命周期,开发者只需关注业务逻辑实现,无需处理底层网络细节。

2025-07-16 09:46:23 2925

原创 双缓冲与Stacktrace:C++多线程与调试的高效实践

双缓冲技术通过分离读写操作解决多线程系统中的数据竞争问题,提升性能和实时性。其核心是设置两个缓冲区,生产者写入后台缓冲区时消费者读取前台数据,避免直接冲突。典型应用包括图形渲染(消除闪烁)、音频处理和数据采集等。C++实现中可利用原子变量保证线程安全,无需显式加锁。此外,C++23引入的栈踪迹技术(std::stacktrace)为系统调试提供强大支持。双缓冲与栈踪迹的结合,使开发者能构建高效、易维护的多线程系统。

2025-07-16 09:46:05 2643

原创 Autoware universe标定流程学习(番外)---最新CalibrationTools传感器校准工具

本文介绍了Autoware中的传感器校准工具安装与使用指南。新版CalibrationTools不再依赖Autoware的tf信息,仅需bag数据即可完成标定。系统要求为Ubuntu 22.04和ROS2 Humble。工具分为外部校准(如激光雷达-激光雷达、相机-激光雷达等)和内部校准(相机内参)两大类,各具不同特征类型和校准方式。架构设计上采用校准器节点与传感器校准管理器分离的模式,前者负责具体标定算法,后者提供用户界面管理项目流程。建议通过sensor_calibration_manager包实现自动

2025-07-16 09:45:41 2650

原创 Autoware universe标定流程学习(二)

Autoware标定模块研究摘要:本文系统梳理了Autoware不同版本(AI、Auto和Core/Universe)的框架特点及适用环境,重点分析了标定模块的代码架构。标定模块包含8个子系统,涵盖激光雷达、相机、雷达等多传感器标定,采用地面平面提取、滤波优化等技术,通过卡尔曼滤波和收敛性检查实现精准校准。研究详细解析了外参标定器实现流程,包括点云数据处理、坐标变换发布等关键环节,为自动驾驶感知系统开发提供了重要参考。

2025-07-16 09:45:10 4055

原创 “bash -e“ 的使用与shell脚本常见使用技巧

在当今的软件开发与系统运维领域,自动化是提升效率和保证一致性的关键。而 Shell 脚本,作为连接和驱动各种命令行工具的“胶水”,无疑是自动化工作流中不可或缺的一环。无论是简单的任务批处理,还是构建复杂的持续集成/持续部署(CI/CD)流水线,Shell 脚本都扮演着至关重要的角色。然而,编写健壮、可靠的 Shell 脚本并非易事。许多开发者,尤其是初学者,常常会陷入一个常见的陷阱:脚本在遇到错误时并不会如预期般停止,而是“默默地”继续执行下去,最终可能导致数据损坏、服务异常甚至系统崩溃等灾难性后果。

2025-07-16 09:44:27 2533

原创 GR00T N1.5 完整使用教程---LIBERO和lerobot

NVIDIA Isaac GR00T (Generalist Robot 00 Technology) 是一个构建机器人基础模型和数据管道的研发平台,旨在加速智能、适应性强的机器人的创造。GR00T N1.5 是 NVIDIA 于2024年6月11日发布的重大更新,是对其之前发布的 GR00T N1 的全面升级,但基本还是基于之前的架构。GR00T N1.5 是一种改进的通用人形机器人开源基础模型,可以称为世界上第一个用于通用人形机器人推理和技能的开放基础模型。这个跨形体模型可以接收多模态。

2025-07-16 09:43:55 3147 4

原创 基于云端EC2的O3DE机器人仿真环境搭建指南

云端机器人仿真:使用O3DE与AWS EC2的实践指南 本文介绍了如何利用开源3D引擎O3DE和AWS EC2云服务搭建高保真机器人仿真环境。通过配置GPU加速的g5实例(推荐g5.4xlarge),安装远程桌面工具VNC/DCV,并设置自动会话,开发者可获得云端仿真能力。文章详细说明了EC2实例的启动参数、安全组规则(开放SSH和8443端口)及存储配置(建议120GB),同时强调成本控制的重要性。该方案支持ROS2集成,为机器人算法验证提供高效、可重复的测试环境,相比实体测试显著提升开发效率。

2025-07-10 19:16:23 2595

MIXVPR训练权重文件

MIXVPR训练权重文件

2024-08-19

ROS2相关资源.pdf

一本ROS2相关的资料整合,非常适合初学者学习

2022-01-07

各学科重要国际学术会议目录.pdf

各学科重要国际学术会议目录,可以知道自己所投会议影响力

2022-01-07

ROS 导航功能调优指南∗.pdf

ROS 导航功能包用于实现移动机器人可靠移动。ROS 导航功能包通过处理里程数据、传 感器数据和环境地图数据,为机器人运动生成一条安全的路径。最大限度地优化导航功能包 的性能需要对相关参数进行调整,且调参这项工作并不像表面上的那么简单。对其中的概念和推理不熟悉的人很大概率会采用随机尝试的策略,无形中浪费了大量时间。

2022-01-07

机械臂项目kuka_iiwa.zip

本资源主要是KUKA_iiwa强化学习仿真,利用强化学习实现机械臂的抓取,并附有详细的代码注释。

2020-04-30

占据栅格地图构建分享.zip

Gmapping的地图构建部分

2021-04-12

ROS_One.zip

ROS QT交互软件,打开即用

2021-04-13

小觅摄像头Opencv处理

小觅摄像头Opencv处理,https://blog.csdn.net/lovely_yoshino/article/details/94859666实现过程

2019-07-06

kuka代码.zip

基于ros的KUKA iiwa700机器人控制操作,已提供说明文档,有问题可以咨询

2021-02-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除