起因
昨天在一个2000多人的QQ群里,大家对AI的使用和应用讨论到了凌晨3点。所以俺就把俺的看法记录了下来。
俺的看法
对于程序员来说 ,AI 是赋能,AI是程序员的一个顶级装备(敏捷+300% 力量+300% 的那种)。同其他行业的人比较,我们更关心AI,更喜欢用AI。我之前的一些文章中也写了一些如何使用AI的例子。相比“编程”来说,其他的行业有很多AI使用的场景。医疗、教育、法律、文娱等等行业,有着大量的适合AI使用的场景。俺的另外一篇文章《基于语音识别的智能电子病历》中,俺讲了医疗的电子病历中在20多年中AI的使用。20年前是 语音识别,10年前语义分析、结构化CDA,现在是电子病历的质量管理、内容分析、Summary 等等。在俺看来,“AI 的使用”是“先进的生产工艺”替代“落后的生产工艺”的过程,是革新,是进步,是“科学技术是第一生产力”的具体实现。
如果 AI 是一个新的爆震发动机,要用这个新的发动机制造出一架飞机,需要大量的设计的。孤零零的一个发动机是飞不起来的。同样,一个AI产品的落地 也会有着大量的其他工作,业务还是要去设计,报表还是有一大堆,各种接口、模块也是铺天盖地。程序员们还是要加班完成各种设计。哪怕程序员们使用AI 生成代码,代码也没啥错误,把这些代码组装出一个完整的解决方案还是要加班。我们可以先把“AI替代程序员”这件事放一边,我们去做行业的探索,做行业深耕,借助AI这个顶级装备,打出一片天地。
当一个探索能够使“平均劳动时间”能够降低30%,同时,质量保持原有的品质,那么这就是一个很了不起的变化。“人工智能的使用”改变了或正在改变着很多行业的工作模式。分工也更加精细化,也带来大量的工作岗位。在没有人工智能的时候,很多事情没法做或者太耗费人工。有了人工智能后,再加上精细化的分工,这些事情就变成了可行的方案,然后落地 、发展。很多高大上的服务,因为价格的降低就变成了大众化的服务。这30年,随着网络、智能手机、硬件的快速发展,诞生了无数的新行业,电商、自媒体、网游、在线教育等等。未来10年, AI的发展 也会带来巨大的变化。
例子
例子1 AI Coding
背景:医疗编码员(Medical Coder) ,一般人3-6个月就可以拿下证书。工作内容就是查看病人的资料和病历等,给出疾病编码、诊疗编码等(例如 ICD10 i11.9 CPT 99214)。俺们单位目前有2000多位医疗编码员。这个项目的目标是“使用AI处理一些简单的Coding业务”。题外话 :程序员小伙伴们,不要担心AI 替代程序员,因为还有很多很多和"编程"相比,简单很多的工作, AI正盯着这些场景磨刀霍霍了。
AI给出的结果,不同的颜色表示准确度不同。K44.9 是绿色的,表示这个编码AI的准确性>90%,如何让AI给出准确性,在俺的文章《AI人工智能的接入和使用》中有详细说明。
AI 部分是调用Microsoft Azure微软云计算服务。
在AI Mode 里有2个选择,可以通过配置自由切换。
例子2 GPT人工智能在医疗文档中的应用
场景:用于文档的整理。主要是针对医疗方面的文档整理。病人在打官司或者办理其他业务时,需要把很多文档整理成册并添加目录、编写概要(Summary)。这些文档有电子版本的,有纸质的扫描件,还有拍照(一般是事故或者车祸现场)等等。一些复杂的病人,一个病人有超过7万8千页的文档。现在每年有超过2.1亿页业务量进行处理。目前主要是靠人工处理。为了提高效率、降低成本,引入了GPT进行自动编写目录、生成概要 。
例子3 DTEHR
这是一个古老的项目,经历了3个公司:
1996年FutureNet-Tech开始开发
2018年FutureNet-Tech被AQuity收购
2023年AQuity被IKS收购
目前还在更新(每月更新一个版本),目前还有接近100家医院或诊所使用。这是一个医疗“转录”系统,其实就是打字服务,听医生的录音,然后基于录音上的内容录入电子病历或医疗报告。看上去是很简单,其实一点也不难。
图上最中间的C位 有两个“QA”
产品的难点在于: 在保证质量的情况下提高工作效率。俺们的老对手Nuance,在这方面做的不错,已被微软用197亿美元收购。
产品是按照报告的行数向客户进行收费的,刚开始的时候 ,一行5-8美分,录入一个比较长的手术报告可能有几十美元,后来随着AI 的使用,工作效率越来越高,成本也逐渐走低。
网友的一些疑问
有网友说:在使用了AI之后,很难控制质量和责任?
俺的回答:
这是个很实际的问题。人有时会嘴瓢,AI也会嘴瓢,而且AI还会一板一眼的瞎编。所以 AI在落地的时候,要设计出一个完善的业务模式。“有问题, 就解决题”, 我们的方向是向前的。例如俺们上面的例子,业务上有各种质检规则,还对所有的数据进行质量追踪。在公司的组织架构上也有相应的变化。俺们设置了独立的部门 和 分公司,负责质量方面的管理。讲个真实的段子,11年的时候,俺去优化一个服装业的ERP时,和客户聊了很多次。客户下达一批衬衫的采购单,要经过33道质控 和 审批 。AI 在使用中确实有“质量和责任”的管理难度。再讲一个段子,医学编码(就是上面的第一个例子),前年,美国有些州立法,至少15%的数据交给第3方公司检查编码的质量。俺们单位也做这个业务,就是检查其他公司的业务数据。