正态分布
正态分布(Normal Distribution)是连续型概率分布中最重要和最常见的一种。假设随机变量 ( X ) 服从均值为 ( \mu )、方差为 ( \sigma^2 ) 的正态分布,记作
正态分布的概率密度函数(PDF)为:
f(x)=12πσ2e−(x−μ)22σ2 f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x - \mu)^2}{2\sigma^2}} f(x)=2πσ21e−2σ2(x−μ)2
期望值
期望值(Expectation)表示随机变量的平均值。对于正态分布 ( X ),其期望值 ( \mathbb{E}(X) ) 定义为:
E(X)=∫−∞∞xf(x) dx \mathbb{E}(X) = \int_{-\infty}^{\infty} x f(x) \, dx E(X)=∫−∞∞xf(x)dx
代入正态分布的概率密度函数:
E(X)=∫−∞∞x12πσ2e−(x−μ)22σ2 dx \mathbb{E}(X) = \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x - \mu)^2}{2\sigma^2}} \, dx E(X)=∫−∞∞x2πσ21e−2σ2(x−μ)2dx
E(X)=∫−∞∞(σz+μ)12πσ2e−z22σ dz \mathbb{E}(X) = \int_{-\infty}^{\infty} (\sigma z + \mu) \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{z^2}{2}} \sigma \, dz E(X)=∫−∞∞(σz+μ)2πσ21e−2z2σdz
简化后为:
E(X)=∫−∞∞(σz+μ)σ2πσ2e−z22 dz \mathbb{E}(X) = \int_{-\infty}^{\infty} (\sigma z + \mu) \frac{\sigma}{\sqrt{2\pi\sigma^2}} e^{-\frac{z^2}{2}} \, dz E(X)=∫−∞∞(σz+μ)2πσ2