证明 正态分布 的期望和方差

正态分布

正态分布(Normal Distribution)是连续型概率分布中最重要和最常见的一种。假设随机变量 ( X ) 服从均值为 ( \mu )、方差为 ( \sigma^2 ) 的正态分布,记作 ( X \sim N(\mu, \sigma^2) )。

正态分布的概率密度函数(PDF)为:

f(x)=12πσ2e−(x−μ)22σ2 f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x - \mu)^2}{2\sigma^2}} f(x)=2πσ2 1e2σ2(xμ)2

期望值

期望值(Expectation)表示随机变量的平均值。对于正态分布 ( X ),其期望值 ( \mathbb{E}(X) ) 定义为:

E(X)=∫−∞∞xf(x) dx \mathbb{E}(X) = \int_{-\infty}^{\infty} x f(x) \, dx E(X)=xf(x)dx

代入正态分布的概率密度函数:

E(X)=∫−∞∞x12πσ2e−(x−μ)22σ2 dx \mathbb{E}(X) = \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x - \mu)^2}{2\sigma^2}} \, dx E(X)=x2πσ2 1e2σ2(xμ)2dx

我们做变量替换 ( z = \frac{x - \mu}{\sigma} ),因此 ( x = \sigma z + \mu ) 且 ( dx = \sigma dz )。积分变为:

E(X)=∫−∞∞(σz+μ)12πσ2e−z22σ dz \mathbb{E}(X) = \int_{-\infty}^{\infty} (\sigma z + \mu) \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{z^2}{2}} \sigma \, dz E(X)=(σz+μ)2πσ2 1e2z2σdz

简化后为:

E(X)=∫−∞∞(σz+μ)σ2πσ2e−z22 dz \mathbb{E}(X) = \int_{-\infty}^{\infty} (\sigma z + \mu) \frac{\sigma}{\sqrt{2\pi\sigma^2}} e^{-\frac{z^2}{2}} \, dz E(X)=(σz+μ)2πσ2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值