pytorch 38 对tensorRT、openvino、onnxruntime(fp32、fp16)推理速度进行对比

本文对比了TensorRT、OpenVINO、ONNXRuntime在GPU和CPU上的推理速度,涉及vgg16、resnet50、efficientnet_b1、cspdarknet53模型。在float32下,GPU推理速度:TensorRT > ONNXRuntime > OpenVINO;CPU推理:OpenVINO > ONNXRuntime。在fp16下,TensorRT加速效果显著,OpenVINO略有提升。此外,还分析了不同模型在fp16下的显存占用情况,fp16占用显著减少。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tensorRT与openvino部署模型有必要么?本博文对tensorRT、openvino、onnxruntime推理速度进行对比,分别在vgg16、resnet50、efficientnet_b1和cspdarknet53四个模型进行进行实验,对于openvino和onnxruntime还进行了cpu下的推理对比。对比囊括了fp32、fp16两种情况。在float32下通过实验得出:openvino GPU < onnxruntime CPU << openvino CPU < onnxruntime GPU <= tensorRT GPU。
得出结论:
1、在cpu上因该使用openvino部署,加速效果明显。
2、在gpu上可以适当考虑tensorRT部署,有一定加速效果(对于计算密集的模型加速效果明显);

在fp16下测试,情况与fp32差异较大。速度排序为: onnxruntime CPU < openvino CPU <= openvino GPU < onnxruntime GPU < tensorR GPU。
可以看出在fp16下,onnxruntime完全没有加速效果;openvino有轻微加速效果,比onnxruntime CPU要强;而tensorRT加速效果明显,相比于float32速度提升了1/3~2/5。

并进行显存占用对比实验,实验数据如下,
fp32下vgg占用590M,resnet50占用162M,efficientnet_b1占用130M,cspdarknet53占用238M;
fp16下vgg占用374M,resnet50占用92M,efficientnet_b1占用68M,cspdarknet

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万里鹏程转瞬至

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值