shmget: Invalid argument error

本文解析了在尝试创建共享内存段时遇到的EINVAL错误,详细解释了错误原因:当新段大小小于SHMMIN或大于SHMMAX,或者已存在相同key的段但新段大小超过原有段大小时触发。文章提供了检查和解决问题的方法,包括使用ipcs命令查看共享内存状态,以及使用ipcrm命令删除错误的共享内存ID。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

EINVAL A new segment was to be created and size < SHMMIN or size > SHMMAX, or no new segment was to be created, a segment with given key existed, but size is greater than the size of that segment.

 

You should check whether you still have an segment for this key using ipcs and remove it with ipcrm.

  

ipcs -m 查看共享内存

ipcs -p 查看共享内存的所有进程ID

ipcrm -m shmid 删除共享内存ID

<think>我们讨论的是kill -9终止进程后释放内存,特别是对共享内存的影响,以及是否影响其他使用共享内存的进程在CPU和GPU上的运行。 关键点: 1. kill -9 会发送SIGKILL信号给进程,进程无法捕获或忽略,会被立即终止。 2. 进程终止后,内核会回收该进程占用的所有资源,包括内存。 3. 共享内存是一种特殊的资源,它允许多个进程访问同一块内存区域。 关于共享内存: - 共享内存由内核管理,通过shmget、shmat等系统调用创建和附加。 - 每个共享内存段都有一个引用计数,记录有多少进程附加到该段。 - 当进程终止时(无论正常退出还是被kill -9),内核会自动将该进程与它附加的所有共享内存段分离(detach),即减少共享内存段的引用计数。 - 只有当引用计数降为0时,内核才会真正销毁并回收该共享内存段。 因此,kill -9终止一个使用共享内存的进程: - 不会立即销毁共享内存段,因为其他进程可能还在使用。 - 只会减少引用计数,如果还有其他进程附加在该共享内存段上,它们可以继续正常使用。 对CPU的影响: - 其他进程仍然可以访问共享内存,因此它们的计算不会因为共享内存的消失而中断。 - 但是,如果被终止的进程与其他进程有协作关系(例如通过共享内存进行数据交换),那么终止该进程可能导致其他进程读取到不完整或无效的数据,从而可能引发逻辑错误(比如无限循环等待新数据)或崩溃(如果数据被破坏)。这属于应用层逻辑,不是内核内存管理的问题。 对GPU的影响(如果共享内存是显存): - 在Linux中,GPU显存也可以通过共享内存机制被多个进程共享(例如NVIDIA的CUDA UVM或AMD的HSA)。但是,通常GPU驱动管理显存的分配和共享。 - 如果进程通过GPU驱动分配的共享显存(例如CUDA中的cudaIpcOpenMemHandle),那么当其中一个进程被kill -9终止时: - GPU驱动会清理该进程的显存资源,但共享显存段是否被回收取决于驱动实现。 - 通常,驱动会维护显存段的引用计数。当创建共享显存段的进程终止时,即使其他进程还在使用,驱动可能会将整个共享显存段标记为无效(因为驱动无法保证数据一致性),导致其他进程访问该显存时出现错误(如CUDA错误)。 - 因此,在GPU场景下,kill -9终止一个进程可能导致其他进程访问共享显存时出现错误,从而影响这些进程的执行(例如GPU计算失败)。 总结: - 对于普通的系统共享内存(shm):其他进程可以继续使用,但要注意应用层逻辑。 - 对于GPU显存的共享:其他进程可能会受到负面影响(驱动级回收),导致后续GPU操作失败。 引用说明: - 引用[2]提到kill -l列出的信号,其中SIGKILL(9)是强制终止,这符合我们的描述。 - 引用[1]中的top命令信息,但与本问题关系不大,故不引用。 因此,回答如下:</think>### kill -9 终止进程对共享内存的影响分析 当使用 `kill -9` 终止进程时,对使用**共享内存**的其他进程在 CPU 和 GPU 上的影响取决于共享内存的类型和状态。以下是关键机制分析: --- ### 1. **共享内存的核心机制** - **共享内存类型**: - **System V 共享内存**:通过 `shmget()` 创建,内核维护引用计数 - **POSIX 共享内存**:通过 `shm_open()` 创建,文件系统映射 - **GPU 显存共享**:通过 CUDA/OpenCL API 实现(如 `cudaIpcOpenMemHandle`) - **引用计数原则**: - 共享内存段的生命周期由引用计数决定 - 公式:$ \text{存活条件} = (\text{attach\_count} > 0) \lor (\text{shm\_nattch} > 0) $ --- ### 2. **kill -9 对 CPU 共享内存的影响** | 场景 | 影响 | 结果 | |------|------|------| | **进程被终止但共享内存仍有其他使用者** | 内核仅减少引用计数,不释放内存 | ✅ 其他进程可继续访问 | | **进程是最后一个使用者** | 内核释放共享内存段 | ❌ 其他进程访问将触发 `SIGSEGV` 段错误 | | **进程异常终止导致数据不完整** | 共享内存中数据可能处于中间状态 | ⚠️ 其他进程读取到脏数据(逻辑错误) | **典型问题**: - 若协作进程依赖同步机制(如信号量),被终止进程可能破坏同步状态,导致死锁或活锁 - 示例:生产者进程被终止,消费者进程在空缓冲区上永久等待[^2] --- ### 3. **kill -9 对 GPU 共享内存的影响** GPU 显存共享更脆弱,因涉及驱动层管理: ```mermaid graph LR A[kill -9 进程] --> B[GPU 驱动清理上下文] B --> C{是否最后一个用户?} C -->|是| D[释放显存块] C -->|否| E[标记显存为无效] E --> F[其他进程访问时触发 GPU 错误] ``` **具体影响**: 1. **NVIDIA CUDA**: - 访问无效显存导致 `cudaErrorInvalidDevicePointer` - 需调用 `cudaDeviceReset()` 恢复(但影响所有进程) 2. **AMD ROCm**: - 触发 `HSA_STATUS_ERROR_INVALID_ARGUMENT` 3. **跨进程同步对象**: - CUDA Events/Semaphores 可能永久挂起等待线程 > 💡 案例:深度学习训练中,若数据加载进程被 `kill -9`,GPU 计算进程可能因共享显存失效而崩溃 --- ### 4. **与 OOM killer 的差异对比** | 特性 | kill -9 | OOM killer | |------|---------|------------| | **目标选择** | 用户指定 | 内核按 `oom_score` 自动选择[^1] | | **共享内存影响** | 相同(均强制终止) | 相同 | | **GPU 影响** | 高危(可能破坏驱动状态) | 相同高危 | | **恢复难度** | 需手动清理 | 系统自动恢复但可能连环 OOM | --- ### 5. **最佳实践建议** 1. **替代方案**: - 优先用 `SIGTERM`(信号 15)允许进程清理资源[^2] - 共享内存进程应实现信号处理器释放资源 ```c void cleanup(int sig) { shmdt(shared_mem); // 解除共享内存附加 exit(0); } signal(SIGTERM, cleanup); ``` 2. **GPU 场景防护**: - 使用 `cudaIpcCloseMemHandle()` 显式关闭共享 - 为关键进程设置 `oom_score_adj` 避免被 OOM kill 3. **监测工具**: - `ipcs -m` 查看共享内存状态 - `nvidia-smi --query-compute-apps=pid,used_memory --format=csv` 监控 GPU 显存 > ⚠️ **警告**:在 GPU 计算集群中,强制终止进程可能导致整个计算任务失败,需谨慎操作!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值