opencv-python图像梯度计算-Sobel算子,Scharr算子,laplacian算子

1 Sobel算子

在这里插入图片描述
dst = cv2.Sobel(src, ddepth, dx, dy, ksize)

  • ddepth:图像的深度
  • dx和dy分别表示水平和竖直方向
  • ksize是Sobel算子的大小
import cv2
import numpy as np

img = cv2.imread('data/pie.png', cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (400, 400))


def cv_show(img, name):
    cv2.imshow(name, img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()


sobelX = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3)
cv_show(sobelX, 'sobelX')

在这里插入图片描述
取绝对值

import cv2
import numpy as np

img = cv2.imread('data/pie.png', cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (400, 400))


def cv_show(img, name):
    cv2.imshow(name, img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()


sobelX = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3)
sobelY = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3)
# 白到黑是正数,黑到白是负数,所有的负数会被截断成0,所以要取绝对值
sobelX = cv2.convertScaleAbs(sobelX)
sobelY = cv2.convertScaleAbs(sobelY)
cv_show(sobelX, 'sobelX')
cv_show(sobelY, 'sobelY')

在这里插入图片描述

在这里插入图片描述

import cv2
import numpy as np


def cv_show(im, name):
    cv2.imshow(name, im)
    cv2.waitKey(0)
    cv2.destroyAllWindows()


img = cv2.imread('data/test2.jpg', cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (400, 400))

sobelX = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3)
sobelY = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3)

# 白到黑是正数,黑到白是负数,所有的负数会被截断成0,所以要取绝对值
sobelX = cv2.convertScaleAbs(sobelX)
sobelY = cv2.convertScaleAbs(sobelY)
cv_show(sobelX, 'sobelX')
cv_show(sobelY, 'sobelY')

# 分别计算x和y,再求和
sobelXY = cv2.addWeighted(sobelX, 0.5, sobelY, 0.5, 0)
cv_show(sobelXY, 'sobelXY')

# 直接计算x和y(不推荐)
sobel_XY = cv2.Sobel(img, cv2.CV_64F, 1, 1, ksize=3)
cv_show(sobel_XY, 'sobel_XY')

只计算X方向
在这里插入图片描述
只计算Y方向
在这里插入图片描述
X方向+Y方向
在这里插入图片描述
X方向和Y方向一起计算
在这里插入图片描述

2 Scharr算子

对变化更加敏感
在这里插入图片描述

3 Laplacian算子

二阶推导,对噪声敏感
在这里插入图片描述

import cv2
import numpy as np


def cv_show(im, name):
    cv2.imshow(name, im)
    cv2.waitKey(0)
    cv2.destroyAllWindows()


img = cv2.imread('data/test2.jpg', cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (400, 400))

sobelX = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3)
sobelY = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3)

# 白到黑是正数,黑到白是负数,所有的负数会被截断成0,所以要取绝对值
sobelX = cv2.convertScaleAbs(sobelX)
sobelY = cv2.convertScaleAbs(sobelY)

# 分别计算x和y,再求和
sobelXY = cv2.addWeighted(sobelX, 0.5, sobelY, 0.5, 0)

# 直接计算x和y(不推荐)
scharrX = cv2.Scharr(img, cv2.CV_64F, 1, 0)
scharrY = cv2.Scharr(img, cv2.CV_64F, 0, 1)
scharrX = cv2.convertScaleAbs(scharrX)
scharrY = cv2.convertScaleAbs(scharrY)
scharrXY = cv2.addWeighted(scharrX, 0.5, scharrY, 0.5, 0)

laplacian = cv2.Laplacian(img, cv2.CV_64F)
laplacian = cv2.convertScaleAbs(laplacian)

res = np.hstack([img, sobelXY, scharrXY, laplacian])
cv_show(res, 'res')

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值