Pandas实战100例 | 案例 93: 转换为分类数据类型

本文介绍如何利用Pandas将具有重复值的列转换为分类数据类型,以提高处理效率和节省内存。通过`astype('category')`方法,可以有效地处理有限独特值的列,并展示了转换操作的示例及运行结果。

案例 93: 转换为分类数据类型

知识点讲解

在处理具有重复值的列时,将数据转换为分类数据类型(categorical)可以提高效率并减少内存使用。Pandas 允许你将列转换为分类数据类型,这在处理具有有限数量唯一值的数据时特别有用。

  • 转换为分类数据类型: 使用 astype('category') 方法可以将列转换为分类数据类型。这对于优化性能和内存使用非常有效。
示例代码
# 准备数据和示例代码的运行结果,用于案例 93

# 示例数据
data_categorical_conversion = {
   
   
    'Category': ['A', 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

若北辰

谢谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值