MAP是什么意思?LoU是什么意思?

本文深入探讨了机器学习中常用的评估指标,包括mean average precision (MAP)、Precision-Recall (PR) 曲线及其在实际应用中的意义。MAP是衡量分类系统总体性能的关键指标,而PR曲线则展示了不同召回率下精确度的变化。此外,还解释了Intersection over Union (IoU)的概念,它是衡量目标检测算法精度的重要标准。通过对这些概念的理解,读者能更好地评估和优化自己的模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

mean average precision (MAP), 各类别AP的平均值

AP: PR曲线下面积。

PR曲线: Precision-Recall曲线

Precision: TP / (TP + FP)

Recall: TP / (TP + FN)

LoU的意思:
绿色标线是人为标记的正确结果(ground-truth),红色标线是算法预测的结果(predicted)。

 

IoU是两个区域重叠的部分除以两个区域的集合部分得出的结果,通过设定的阈值,与这个IoU计算结果比较。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值