知识蒸馏知识点

 1基于kl散度计算,学生模型需要用log_softmax处理

2 为了避免温度对梯度的影响,loss*T**2

操作 目的
教师 / 学生输出除以  软化概率分布,暴露类别间关系
损失乘以  抵消温度对梯度的缩放,维持梯度量级稳定,确保训练收敛性
import torch
import torch.nn.functional as F

# 原始logits(未缩放)
z_teacher = torch.tensor([[3.0, 1.0, 0.5]])
z_student = torch.tensor([[2.5, 0.8, 0.3]], requires_grad=True)  # 直接启用梯度

# 温度参数
T = 4.0

# 计算KL散度损失(带温度缩放)
P = F.softmax(z_teacher / T, dim=1)
log_Q = F.log_softmax(z_student / T, dim=1)  # 此时梯度已追踪

# 损失计算
loss_unscaled = F.kl_div(log_Q, P, reduction='batchmean')
loss_scaled = loss_unscaled * T**2

# 反向传播
loss_scaled.backward()
gradient = z_student.g
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CVer儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值