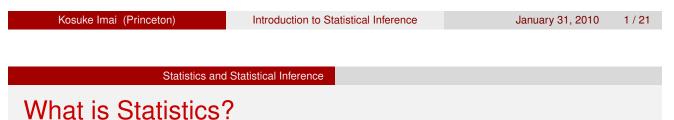
Introduction to Statistical Inference

Kosuke Imai

Princeton University

January 31, 2010



- Relatively new discipline
- Scientific revolution in the 20th century
- Data and computing revolutions in the 21st century
- The world is stochastic rather than deterministic
- Probability theory used to model stochastic events
- Statistical inference: Learning about what we do not observe (parameters) using what we observe (data)
- Without statistics: wild guess
- With statistics: principled guess
 - assumptions
 - Iormal properties
 - Implement of uncertainty

Statistics for Social Scientists

- Quantitative social science research:
 - Finding a substantive question
 - Constructing theory and hypothesis
 - Obsigning an empirical study
 - Using statistics to analyze data and test hypothesis
 - Seporting the results
- No study in social sciences is perfect
- Statistical methods are no substitute for a good design
- Data analysis = statistical theory (objective) + judgement calls (subjective)
- Justifying your choices and increasing credibility
- Understanding and evaluating the assumptions of statistical methods

Kosuke Imai (Princeton)	Introduction to Statistical Inference	January 31, 2010	3 / 21

Statistics and Statistical Inference

How Not to Study Statistics

- Learning statistics (or math in general) is **different** from learning substantive topics in political science
- "Skip equations, and try to understand them from the context..."
- "I should be able to get the intuition without knowing the math..."
- "Move on, and try to figure out the next topic..."
- "Do you understand so far? Uhhh... Yes."
- "I put all of the formulae on flashcards to study for the exam..."
- "I am just going to copy down the formula..."
- "What formula am I supposed to use here?"
- Goal of the course: become a sophisticated user of statistical methods and build a solid foundation for future study

Three Modes of Statistical Inference

Descriptive Inference: summarizing and exploring data

- Inferring "ideal points" from rollcall votes
- Inferring "topics" from texts and speeches
- Inferring "social networks" from surveys

Predictive Inference: forecasting out-of-sample data points

- Inferring future state failures from past failures
- Inferring population average turnout from a sample of voters
- Inferring individual level behavior from aggregate data

Causal Inference: predicting counterfactuals

- Inferring the effects of ethnic minority rule on civil war onset
- Inferring *why* incumbency status affects election outcomes
- Inferring whether the lack of war among democracies can be attributed to regime types

Kosuke Imai (Princeton)	Introduction to Statistical Inference		January 31, 2010	5 / 21
	Causal Inference	Potential Outcomes	Framework	

What is Causal Inference?

- Comparison between factual and counterfactual
- Incumbency effect
- What would have been the election outcome if a candidate were not an incumbent?
- Resource curse thesis
- What would have been the GDP growth rate without oil?
- Democratic peace theory
- Would two autocracies have escalated crisis in the same situation?
- SUPPLEMENTARY READING: Holland, P. (1986). Statistics and causal inference. (with discussions) *Journal of the American Statistical Association*, Vol. 81: 945–960.

Defining Causal Effects

- Units: *i* = 1,...,*n*
- "Treatment": $T_i = 1$ if treated, $T_i = 0$ otherwise
- Observed outcome: Y_i
- Pre-treatment covariates: X_i
- Potential outcomes: $Y_i(1)$ and $Y_i(0)$ where $Y_i = Y_i(T_i)$

Voters	Contact	Turr	nout	Age	Party ID
i	T_i	$Y_{i}(1)$	$Y_{i}(0)$	X_i	X_i
1	1	1	?	20	D
2	0	?	0	55	R
3	0	?	1	40	R
÷	÷	÷	÷	÷	÷
п	1	0	?	62	D

• Causal effect: $Y_i(1) - Y_i(0)$

Kosuke Imai (Princeton)	Introduction to Statistical Inference			January 31, 2010	7 / 21
	Causal Inference	Potential Outcomes	Framework		
The Key Assumpt	tion				

The Key Assumption

• No interference between units:

$$Y_i(T_1, T_2, \ldots, T_n) = Y_i(T_i)$$

- Stable Unit Treatment Value Assumption (SUTVA)
- Potential violations: spill-over effects, contagion, cluster randomized experiments
- Potential outcomes are thought to be fixed for each individual
- *J*-valued treatment $\longrightarrow J$ potential outcomes for each unit

Causal Effects of Immutable Characteristics

- "No causation without manipulation" (Holland, 1986)
- Immutable characteristics; gender, race, age, etc.
- What does the causal effect of gender mean?
- Causal effect of having a female politician on policy outcomes (Chattopadhyay and Duflo, 2004 QJE)
- Causal effect of having a discussion leader with certain preferences on deliberation outcomes (Humphreyes *et al.* 2006 *WP*)
- Causal effect of a job applicant's gender/race on call-back rates (Bertrand and Mullainathan, 2004 AER)

Kosuke Imai (Princeton)	Introduction to Statistical Inference			January 31, 2010	9 / 21
	Causal Inference	Potential Outcomes	Framework		
Average Causal Effects					

• Sample Average Causal Effect (SACE):

$$\frac{1}{n}\sum_{i=1}^{n}Y_{i}(1)-Y_{i}(0)$$

• Population Average Causal Effect (PACE):

$$\mathbb{E}(Y_i(1) - Y_i(0))$$

• Population Average Treatment Effect for the Treated (PATT):

$$\mathbb{E}(Y_i(1) - Y_i(0) | T_i = 1)$$

- Causal heterogeneity: Zero ACE doesn't mean zero effect for everyone
- Other quantities: Conditional ACE, Quantile Causal Effects, etc.

Design Considerations

- No causation without manipulation (Holland)
- Randomization of the treatment enables the unbiased estimation of average causal effects
 - Laboratory experiments
 - Survey experiments
 - Field experiments
- Natural experiments with haphazard treatment assignment
 - Birthdays
 - Weather
 - Close elections
 - Arbitrary administrative rules
- Observational studies with statistical control
 - Regressions
 - Matching
- Tradeoff between internal and external validity

Kosuke Imai (Princeton)	Introduction to Sta	atistical Inference	January 31, 2010	11 / 21
	Causal Inference	Truncation by Death		

Truncation by Death

- Units: patients (students)
- Treatment: a new medicine (a new teaching program)
- Outcome: blood pressure (the end-of-year test score)
- Truncation: some patients die (some students drop out)
- Blood pressure (test score) undefined for the dead (drop-outs)!
- Randomized evaluation of Mexican health care
- Units: individuals
- Treatment: universal health insurance
- Outcome: satisfaction with the received health care
- Truncation: some have not been to clinics or hospitals
- SUPPLEMENTAL READING: Rubin, D. B. (2006). Causal Inference Through Potential Outcomes and Principal Stratification: Application to Studies with "Censoring" Due to Death *Statistical Science*, Vol. 21: 299 – 309. Skip Sections 4 – 6.

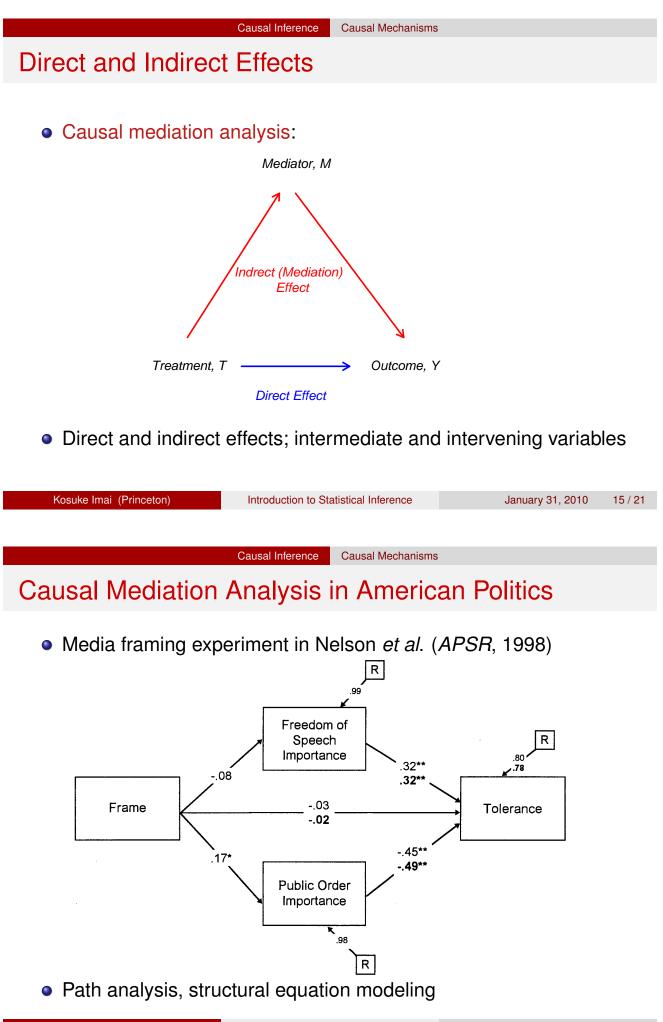
Principal Stratification

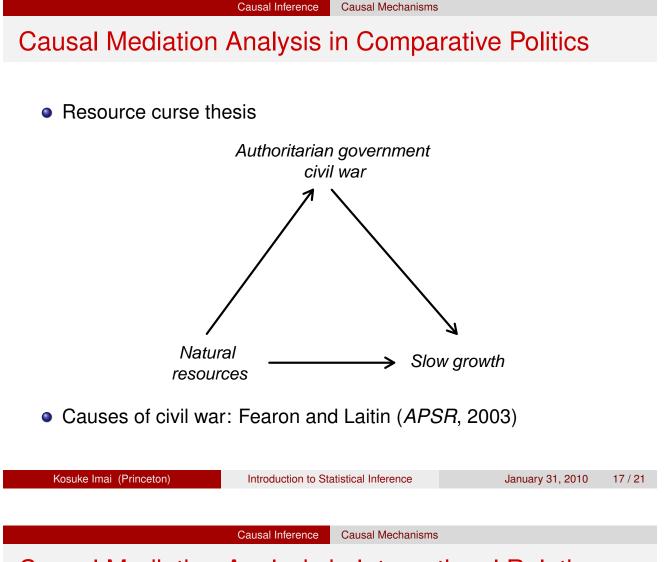
- Comparison between the dead and the alive is invalid
 - Potential selection bias
 - Causal effects need to be defined at the unit level
- Binary treatment: $T_i \in \{0, 1\}$
- Potential truncation variable: $W_i(1), W_i(0)$
- Observed truncation variable: $W_i = W_i(T_i)$
- Potential outcomes: $Y_i(0,0), Y_i(1,0)$
- $Y_i(0, 1), Y_i(1, 1)$ do not exist
- Observed outcome: $Y_i = Y_i(T_i, W_i)$ for $W_i = 0$
- Causal effect: $Y_i(1,0) Y_i(0,0)$ for "always-survivors"
- Not defined for other types (principal strata)

Kosuke Imai (Princeton)	Introduction to Sta	atistical Inference	January 31, 2010	13 / 21
	Causal Inference	Causal Mechanisms		

Causal Effects vs. Causal Mechanisms

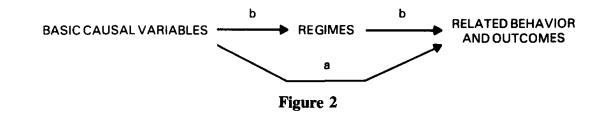
- Causal inference is a central goal of social science research
- Randomized experiments are seen as gold standard
- But, experiments are a black box
- Can only tell whether the treatment causally affects the outcome
- Not how and why the treatment affects the outcome
- Qualitative research uses process tracing
- How can quantitative research be used to identify causal mechanisms?
- SUPPLMENTAL READING: Imai, K., Tingley, D., and Yamamoto, T. (2009). Experimental Identification of Causal Mechanisms. Available at http://imai.princeton.edu/research/Design.html Read only Section 2.





Causal Mediation Analysis in International Relations

- The literature on international regimes and institutions
- Krasner (International Organization, 1982)



• Power and interests are mediated by regimes

Potential Outcomes Notation for Causal Mechanisms

- Treatment: $T_i \in \{0, 1\}$
- Potential mediators: $M_i(t)$ where $M_i = M_i(T_i)$
- Potential outcomes: $Y_i(t, m)$ where $Y_i = Y_i(T_i, M_i(T_i))$
- Total causal effect: $\tau_i \equiv Y_i(1, M_i(1)) Y_i(0, M_i(0))$
- Indirect effects:

$$\delta_i(t) \equiv Y_i(t, M_i(1)) - Y_i(t, M_i(0))$$

- Change the mediator from M_i(0) to M_i(1) while holding the treatment constant at t
- Indirect effect of the treatment on the outcome through the mediator under treatment status t
- $Y_i(t, M_i(t))$ is observable but $Y_i(t, M_i(1 t))$ is not

Kosuke Imai (Princeton)	Introduction to St	atistical Inference	January 31, 2010	19 / 21
	Causal Inference	Causal Mechanisms		

• Direct effects:

$$\zeta_i(t) \equiv Y_i(1, M_i(t)) - Y_i(0, M_i(t))$$

- Change the treatment from 0 to 1 while holding the mediator constant at M_i(t)
- Total effect = mediation (indirect) effect + direct effect:

$$au_i = \delta_i(t) + \zeta_i(1-t) = \frac{1}{2} \sum_{t=0}^1 \delta_i(t) + \zeta_i(t)$$

• Quantities of interest: Average Causal Mediation Effects,

$$\mathbb{E}(\delta_i(t)) = \mathbb{E}\{Y_i(t, M_i(1)) - Y_i(t, M_i(0))\}$$

Concluding Remarks

- Descriptive inference: becoming increasingly important in the age of data revolution
- Predictive inference: under-utilized in social sciences but could be used more for theory testing and policy making
- Causal inference: most difficult but most casually used

Conclusions

- Potential outcomes framework, dating back to Neyman (1923)
- Importance of design considerations
- Credibility of causal assumptions

Introduction to Statistical Inference

January 31, 2010 21 / 21