ABC 157 fi#a%

writer: kortOn

2020 3 H 1 H

For International Readers: English editorial starts on page B.

A: Duplex Printng

% Z& floor (§) ©F (floor (z) ik 2 & /NS < ARWEBRRDERE KT,
BIZIE, C++ TIE N % int MOZKE T, ZhE (N+1)/2 2 LTRkDBZEeDHRET,
PARIX C++ TOFEEFITT,

1 #include <bits/stdc++.h>
2 using namespace std;

3 int main() {

4 int N;

5 cin >> N;

6 int ans = (N + 1) / 2;
7 cout << ans << endl;

8 return O;

9 }

B: Bingo

MO RBEY IZE T ALY =2 PN WTWENEREZEH L, ¥ IDEAL L TWBHDEE
TEDEMEPDET,

vy ah— ROEHIIZ TR AMER T,

AR C++ TOFEEHFITT,

#include <bits/stdc++.h>

Ju—

2 using namespace std;

3 int N, A[3][3], b[10];

4 bool appear[3][3];

5 int main() {

6 for(int i = 0; i < 3; i++) {

7 for(int j = 0; j < 3; j++) cin >> A[i][j];

8 }

9 cin >> N;

10 for(int i = 0; i < N; i++) cin >> b[i];

11 for(int i = 0; i < N; i++) {

12 for(int j = 0; j < N; j++) {

13 appear [i] [j]1 = false;

14 for(int k = 0; k < N; k++) {

15 if (A[4i] [J] == b[k]) appear[i] [J] = true;

16 }

17 }

18 }

19 string ANS = "No";

20 for(int i = 0; i < 3; i++) {

21 if (appear[i] [0] and appear[i] [1] and appear[i] [2]) ANS = "Yes";
22 }

23 for(int i = 0; i < 3; i++) {

24 if (appear [0] [i] and appear[1] [i] and appear[2] [i]) ANS = "Yes";
25 }

26 if (appear[0] [0] and appear[1][1] and appear[2][2]) ANS = "Yes";
27 if (appear[0] [2] and appear[1] [1] and appear[2] [0]) ANS = "Yes";
28 cout << ANS << endl;

29 return O;

30

C: Guess the Number
ik 1

0 LAE 10N RiOBEE AL THRE T, FMMEORNLF =y 72175 LTk, B E — B XFINE
g2 LETT,
R O (10 M) T,

% 2

M DM DNT, FEDFHELRODEFID S IEIZHED»O D OMOHERMZKD . BEIZZTNS
DER/MEEZHIL ET,
72720, N >2 OFHEICRYE»S 1 HEIKX O I NDNWI EIZERLULTLEI Y,
FRfIFHRREIZ O (N + M) TF,

D: Friend Suggestions

AN&THR, KEBREZLE U7 7 725258, N i T KA.

(TERL @ DAL DY 1 X)

—(TE G CTHRA BAIUERR D ICEENT, Ni L A jHPRKERRE LI 70y 7BRIZH B &
572 § D)

—1

TY (RO 1 IFHTHH),

BIHMNBRT 2 EER S 2 KD, ZHEERS OV 1 X2 RO THIHE, FEAT LD ERLOfEZ F#IZ
AR A e HkET,

ZHiE, Union Find D k547 — & EiE2HVE0, £ ULLIEZ I 7 ETDFS 2175 22 %FI2&D
FEHRHRET,

BERIAER L. IAIE DES OBAE O (N + M + K) T,

E: Simple String Queries

BT (a, by .y z) BIZXFHRICEN S G OEEEEHT L2 EZE T,
B Z 13, set (CEHE R A) 22 1E, type 1 ® 2 TV & erase BIE L insert B%E VT O (log N)
THHFEETH D, type 2 D27 TV IFHKXLFE T LIZ lower_bound BT 1, XFHARHIO TFEET
LG & RD, ZTOMEE v, BT HZLI2ED, O(logN) TUEERETT, EXD, RIEKDK
Mzl & O ((Alphabet Size) Qlog N) TUIAIRET T,
fl1iz ., Segment Tree ¥ FE AN ENZ & D FEXFHRZEEIEICERN B RIHEZFH L0, FXFEIZERN
HZXFOEEEEMLZ0TEILIZL-T, 72V 2EEICUET 22 2 HAEETT,

F: Yakiniku Optimization Problem
fRE 1

MR T OWE T K WA EORDHET B & 5 REAJROBEGFTIFET 5571 &S HErE
EEZBHE, ZOHEMEICIIEFAEL DO ET06, EXAZ2 o BHRTRKDEZ LHrHRET,
ZOHEMEEBUENCER LT DL, UTFO@BY IR £7,
rNW@HWﬁ%&imﬁ@mw@$®@@MMT%0\¥@ﬁ£@@50KWuL@HWK@
END LS BEABEET E20HEE &)

ZOREIZ, MTOLIIZE VIR 5 Z EAHEE T,

[N BOMEA DB, i EHDOHRO RO (2,5:) THY, FEE L Tho, Zns0 N KO
"o K MO EZRIEDFTH->T. K MOMROTEEADVIEEL LD XS5BT H 5 0
&,

ZZT, K MOMWKOBEESE X BEETH-7-L &, ZOEEGIT 1 HOMKE —BT 55, WIEHE
WIZEEBRICEWERROMROBES L — B LUET,
MEDOHEIZZOMARDOFLDREEN X IZ8Eh, BEDOELEIEH S 2 MOHARBEFEEL., Fhb
OERERTHOREAN X CHEENET.

INn&o, NEOHOHLEG N HOMADSH 2 HOMDRFLETIZDOWT, ZD % &SR
K WA EFES 22 #2222 b, iR OHEMEE O (N3) T Z e hiliskEd,
BUEX D, #AE%EE eps & LT, TOMEE O (C"‘a"(“‘“axlﬂy‘““‘)N3) TR 2 L ANk E T,

eps

R 2

K=10 EZEXEHSMI0TT, MFTRK >22LET, K > 2055, EXIEH LI
0 KhRE<AWZxT,

MR TRA P (X,Y) LB i OB £, e/ (X —2:)° + (Y —y)° TEDET.

Wil jhoDHMIELVROERIR. ¢ =c; DEEREMRTHY, ¢; #c¢; DEZIFMNTT,
K>20% &, BolRBRMEIX, 52525 2 MOWD» S DIEHENEL . 2D ZDMEIER/NE 725 1
n BV IEERR S 3MORD S DEREENE L WVWETT,

INEBHEEIZEIVRAUET, AIBOFMEEHEZIRVE P Pl B R E THL EKELET,
IDOLEDEAET LBEET, THERL T T 2% tight ZRR &P ET, KELD. tight
BAEEL 2T,

tight A0 M TH D & &, Bi%E PIciE< &, KL T X0 Eiicd K UL L0 HET T
WET,

tight ZB 1M TH 2L &, K P 2o ZDRDHFANMEPITHEATZRLTIE, LT &0 E»IHTT
H K ML EORDBET TWET,

tight WA 2 MTHD L E, ThHEW, W LELS L, Wi 2F0LhET5EF CZ DML O
j EHLE T B 1 OHBIZE TN, HIZH i 25 OHEEE W §j 25 OIHEELE L WO EE I,
WE LD —mEATIEIRL, AROET 2R OMIBNIZHIIRE 20 £, Z OO N D 50U B
EET 2L, BZT L0 EPCHITE K A EORDPBET TVWET,

PAEX D, Sz 2WRELE ORI, ik D52z Rt onEd,

INED, BROERFIF L TEMCBRERE U 7ZBICSHAET 2 £ TORMZ KD, K #HH
OB 2 TN IR ZRkDDZ 21k, MHEB/DZZEPHRET,

RERIEHR R, K BHORDYET 5 & TIslh 22 RO BBXIZY — b 2452 O (N*log N) T
HY. ERTLITY XLEHNE O (NY) TF,

A: Duplex Printng

The answer is floor (%) (where floor () denotes the maximum integer that is not less than
x)o
BZIE, C++ TEN %2 int BlOZEHE T2, ZHiE (N+1)/2 L LTRDDZEWHKET,
For example in C++, when N is a variable of type int, this can be calculated by (N + 1) /2.
The following is a sample code in C++.

1 #include <bits/stdc++.h>
2 using namespace std;

3 int main() {

4 int N;

5 cin >> N;

6 int ans = (N + 1) / 2;
7 cout << ans << endl;
8
9

return O;

B: Bingo

Follow the problem statement’s instruction and manage if each square is marked or not, and
check if there is a row that forms a bingo.
When managing the bingo card, two-dimensional array is useful.

The following is a sample code in C++.

#include <bits/stdc++.h>

Ju—

2 using namespace std;

3 int N, A[3][3], b[10];

4 bool appear[3][3];

5 int main() {

6 for(int i = 0; i < 3; i++) {

7 for(int j = 0; j < 3; j++) cin >> A[i][j];

8 }

9 cin >> N;

10 for(int i = 0; i < N; i++) cin >> b[i];

11 for(int i = 0; i < N; i++) {

12 for(int j = 0; j < N; j++) {

13 appear [i] [j]1 = false;

14 for(int k = 0; k < N; k++) {

15 if (A[4i] [J] == b[k]) appear[i] [J] = true;

16 }

17 }

18 }

19 string ANS = "No";

20 for(int i = 0; i < 3; i++) {

21 if (appear[i] [0] and appear[i] [1] and appear[i] [2]) ANS = "Yes";
22 }

23 for(int i = 0; i < 3; i++) {

24 if (appear [0] [i] and appear[1] [i] and appear[2] [i]) ANS = "Yes";
25 }

26 if (appear[0] [0] and appear[1][1] and appear[2][2]) ANS = "Yes";
27 if (appear[0] [2] and appear[1] [1] and appear[2] [0]) ANS = "Yes";
28 cout << ANS << endl;

29 return O;

30

C: Guess the Number
Solution 1

Check for all the integers more than or equal to 0, and less than 10. When checking the
conditions, temporal conversion from integer to string will make the implementation easier. The

total time complexity is O (1ONM).

Solution 2

For each of M conditions, narrow down the candidates while checking for contradictions, and
at last output the minimum of them.
Note that the 1-st digit should not be 0 only if N > 2.
The total time complexity is O (N + M).

10

D: Friend Suggestions

Consider a graph, whose vertices correspond the users and whose edges correspond to the

friendship. Then the answer for user ¢ is

(The size of the connected component of vertex)
—(The number of j, such that vertex ¢ and vertex j belong to the same connected component,
and user ¢ and user j is in a friendship or in a blockship)

—1.

(The last 1 is the user him/herself.)

By finding the connected component to which each vertex belongs, and finding the size of each
connected component, the value mentioned above for each user can be calculated fast.

This can be achieved by using data structures like Union Find, or performing a DFS on the

graph. The time complexity is, O (N + M + K) in case of DFS for example.

11

E: Simple String Queries

Consider managing the set of positions such that each alphabets (a, b, ..., z) appears in the
string.
For example, by using a set (self-balancing binary search tree), a query of type 1 can be processed
in a O (log N) time using erase function and insert function, and a query of type 2 can be
processed in a O (log N) time by find the position of the first appearance after [,-th letter, and
then comparing it with 7, using lower_bound function. Therefore, the overall queries can be
processed in a total of O ((Alphabet Size) @ log N) time.
Otherwise, the query can be processed fast by managing the number of appearances of each
alphabet in each segment, or the set of alphabets that appear in each segment, using Segment

Tree or square-root splitting.

12

F: Yakiniku Optimization Problem
Solution 1

By considering a decision problem of ”does there exist a place to put the heat source such
that K or more pieces of meat is ready at time 77”, then this problem has monotonicity, so the
answer can be found in a binary search.

A mathematical formalization of this decision problem is as follows:

“You are given N disks. The center of i-th disk is (x;,y;) and its radius is g Determine whether
there exists a point such that is included in K or more disks.”

This problem can be reworded as follows.

“You are given N disks. The center of i-th disk is (x;,y;) and its radius is CZ Determine if
there exists a set of K disks out of those N disks, such that the union set of those K disks is
non-empty.”

Here, if a union of K disks X is non-empty, then it corresponds to a disk, or a union of some
disjoint multiple disks.

In the former case, the center coordinate of the disk is included in X, and in the latter case,
there exist two disks such that the intersection of their boundary circles is included in X.
Hence, by checking if a point is included in K or more disks for all the N centers and all the
intersections of pairs of circles, the aforementioned decision problem can be solved in a total of
O (N 3) time.

Therefore, denoting by eps the maximum permissible error, the original problem can be solved
in a total of O (C““"‘(‘zm:;lﬂy‘m"l)NS) time.

Solution 2

If K =1, then obviously the answer is 0. Hereinafter assume that K > 2. Under K > 2, the

answer is obviously more than 0.

Hereinafter we define a ”distance “ between point P (X, Y") and meat i by ¢; \/(X —z)? + (Y —)
The set of points such that the distances from meat ¢ and from meat j are equal is a line if
¢i = ¢4, and a circle if ¢; # ¢;.

Under K > 2, the optimal position of heat source is a point such that the distances from distinct
two pieces of meat are the equal and its value is minimum, or a point such that the distances
from distinct three pieces of meat are the equal.

We will show this by contradiction. Suppose that a point P such that does not satisfy the

aforementioned conditions is the optimal heat source position. Let T be the answer in such

13

case. We will call a piece of meet that becomes ready at time 7. By assumption, there exist at
most two pieces of meat is tight.

If 0 pieces of meat are tight, by placing a heat source at P, K or more pieces of meat is ready
even before time 7.

If 1 piece of meat is tight, at the point a little nearer to the meat than point P, K or more
pieces of meat is ready at the time a little before time 7.

If 2 pieces of meat are tight, denoting those meat by i and j, a set of points, such that is
included in a disk whose center is meat ¢ and whose radius is c%, is included in a disk whose

L "and the distances from meat i and from meat j is equal,

Cj

center is meat j and whose radius is
is not a singleton, but a segment or a curve of finite length, by assumption. By placing a heat
source at the interior point of this curve, K or more pieces of meat is ready at the time a little
before time T

Therefore, the candidates of optimal heat source positions are narrowed down into such points
that satisfy the aforementioned conditions.

Hence, by iterating all the points mentioned above, finding the time needed for each meet to be
ready when the heat source is placed at each point, and by finding the time needed until the
K-th meat is ready, the solution can be found.

The time complexity is O (N 4log N) if a sort is performed when finding the time needed until
the K-th meat is ready, and is O (N 4) if a selection algorithm is used.

14

