亲爱的读者们👋
欢迎加入【30天精通Prometheus】专栏!📚 在这里,我们将探索Prometheus的强大功能,并将其应用于实际监控中。这个专栏都将为你提供宝贵的实战经验。🚀
Prometheus是云原生和DevOps的核心监控工具,我们将从基础概念开始,逐步涵盖配置、查询、告警和可视化。💪
在接下来的30天里,我们将解锁Prometheus的实战技巧,通过案例和分享,助你深入理解其工作原理。📆
目标:30天后,你将熟练掌握Prometheus,为未来的项目挑战做好准备!💯
这是一段精彩旅程,期待你的加入!🎉
- 【30天精通Prometheus:一站式监控实战指南】第1天:深入探索Prometheus:30天一站式监控实战指南的开篇之旅
- 【30天精通Prometheus:一站式监控实战指南】第2天:Prometheus从入门到实战:安装、配置详解与生产环境搭建指南
- 【30天精通Prometheus:一站式监控实战指南】第3天:Alertmanager从入门到实战:安装、配置详解与生产环境搭建指南
- 【30天精通Prometheus:一站式监控实战指南】第4天:node_exporter从入门到实战:安装、配置详解与生产环境搭建指南,超详细
- 【30天精通Prometheus:一站式监控实战指南】第5天:kafka_exporter从入门到实战:安装、配置详解与生产环境搭建指南,超详细
- 【30天精通Prometheus:一站式监控实战指南】第6天:mysqld_exporter从入门到实战:安装、配置详解与生产环境搭建指南,超详细
- 【30天精通Prometheus:一站式监控实战指南】第7天:postgres_exporter从入门到实战:安装、配置详解与生产环境搭建指南,超详细
- 【30天精通Prometheus:一站式监控实战指南】第8天:redis_exporter从入门到实战:安装、配置详解与生产环境搭建指南,超详细
- 【30天精通Prometheus:一站式监控实战指南】第9天:elasticsearch_exporter从入门到实战:安装、配置详解与生产环境搭建指南,超详细
- 【30天精通Prometheus:一站式监控实战指南】第10天:blackbox_exporter从入门到实战:安装、配置详解与生产环境搭建指南,超详细
- 【30天精通Prometheus:一站式监控实战指南】第11天:consul_exporter从入门到实战:安装、配置详解与生产环境搭建指南,超详细
- 【30天精通Prometheus:一站式监控实战指南】第12天:windows_exporter从入门到实战:安装、配置详解与生产环境搭建指南,超详细
- 【30天精通Prometheus:一站式监控实战指南】第13天:graphite_exporter从入门到实战:安装、配置详解与生产环境搭建指南,超详细
- 【30天精通Prometheus:一站式监控实战指南】第14天:jmx_exporter从入门到实战:安装、配置详解与生产环境搭建指南,超详细
- 【30天精通Prometheus:一站式监控实战指南】第15天:ipmi_exporter从入门到实战:安装、配置详解与生产环境搭建指南,超详细
- 【30天精通Prometheus:一站式监控实战指南】第16天:snmp_exporter从入门到实战:安装、配置详解与生产环境搭建指南,超详细
- 【30天精通Prometheus:一站式监控实战指南】第17天:nginx-prometheus-exporter从入门到实战:安装、配置详解与生产环境搭建指南,超详细
- 【30天精通Prometheus:一站式监控实战指南】第18天:apache_exporter从入门到实战:安装、配置详解与生产环境搭建指南,超详细
- 【30天精通Prometheus:一站式监控实战指南】第19天:haproxy_exporter从入门到实战:安装、配置详解与生产环境搭建指南,超详细
- 【30天精通Prometheus:一站式监控实战指南】第20天:dcgm-exporter从入门到实战:安装、配置详解与生产环境搭建指南,超详细
- 【30天精通Prometheus:一站式监控实战指南】第21天:深入解析PromQL(Prometheus Query Language)的高级用法,解锁监控数据的无限可能,释放监控数据潜能
- 【30天精通Prometheus:一站式监控实战指南】第22天:如何将Prometheus与Grafana集成,通过可视化的方式展示监控数据,提高监控效率
- 【30天精通Prometheus:一站式监控实战指南】第23天:如何搭建高可用的Prometheus集群,以应对大规模监控场景和单点故障问题,确保监控服务的稳定性
- 【30天精通Prometheus:一站式监控实战指南】第24天:Prometheus数据存储与性能调优攻略,通过优化存储和查询性能来提升监控系统的整体效率
- 【30天精通Prometheus:一站式监控实战指南】第25天:微服务架构下的Prometheus实战,Kubernetes与Prometheus集成:集群监控实战
- 【30天精通Prometheus:一站式监控实战指南】第26天:构建健壮的高可用Prometheus集群,以应对大规模监控挑战与单点故障风险
- 【30天精通Prometheus:一站式监控实战指南】第27天:Prometheus与第三方工具集成:提升监控能力
- 【30天精通Prometheus:一站式监控实战指南】第28天:故障排查与告警分析实战案例分享
- 【30天精通Prometheus:一站式监控实战指南】第29天:Prometheus监控策略与最佳实践指南
- 【30天精通Prometheus:一站式监控实战指南】第30天:Prometheus监控技术回顾与未来展望
一、引言
1.1 微服务架构的特点及其对监控的需求
微服务架构的核心特点
微服务架构通过将单体应用拆分为多个独立、松耦合的服务,提升了系统的灵活性、可维护性和可扩展性。其核心特点包括:
1. 分布式部署:服务分散在多个节点或容器中,跨网络通信。
2. 动态扩缩容:服务实例根据负载动态增减(如Kubernetes的自动扩缩)。
3. 技术异构性:不同服务可能使用不同编程语言、框架或中间件。
4. 服务依赖复杂:服务间通过API或消息队列交互,形成调用链依赖。
对监控的挑战与需求
微服务的分布式特性对监控提出了更高要求:
1. 实时性与细粒度:需快速发现服务实例故障、资源瓶颈或延迟突增。
2. 全链路追踪:跟踪请求跨服务的完整路径(如结合Jaeger/Zipkin)。
3. 动态感知能力:自动发现新增或销毁的服务实例(如Kubernetes Pod)。
4. 多维指标聚合:从服务、实例、版本等多维度聚合指标(如HTTP错误率、CPU使用率)。
5. 统一监控视图:整合基础设施(节点、容器)、服务层(API性能)、业务层(订单成功率)的监控数据。
1.2 Prometheus与Kubernetes结合的优势
Prometheus的核心能力
- 多维度数据模型:基于标签(Label)的时序数据,支持灵活查询(如rate(http_requests_total{status=“500”}[5m]))。
- 主动拉取(Pull)机制:适合动态环境,通过服务发现自动抓取目标。
- 强大的告警规则:支持复杂条件告警(如持续5分钟错误率>1%)。
- 丰富的Exporter生态:支持MySQL、Redis、Nginx等组件监控。
Kubernetes与Prometheus的协同优势
- 原生服务发现集成
- Prometheus通过Kubernetes API自动发现Pod、Service、Endpoint等资源,无需手动配置监控目标。
- 示例:使用kubernetes_sd_config配置自动监控所有带有prometheus.io/scrape=true注解的Pod。
- 容器化监控深度支持
- 结合cAdvisor监控容器资源(CPU、内存、IO),kube-state-metrics采集Kubernetes对象状态(如Deployment副本数)。
- 示例:通过container_memory_usage_bytes跟踪容器内存使用。
- 动态环境的无缝适配
- 当服务因HPA(水平扩缩容)或滚动更新导致实例变化时,Prometheus自动更新抓取目标,确保监控连续性。
- 声明式配置管理
- 通过Prometheus Operator以CRD(自定义资源)定义监控规则、告警策略,与Kubernetes的声明式理念一致。
- 示例:使用ServiceMonitor对象定义需要监控的服务端点。
- 云原生生态融合
- 作为CNCF毕业项目,Prometheus与Kubernetes、Grafana、Thanos等工具深度集成,形成完整的可观测性栈。
二、微服务架构简介
2.1 微服务架构的核心概念
定义与核心思想
微服务架构是一种将单一应用拆分为一组小型、独立服务的架构模式,每个服务围绕业务能力构建,通过轻量级通信机制协作。其核心思想包括:
- 服务拆分:按业务领域(如订单、支付、用户管理)垂直划分服务,确保单一职责。
- 独立部署:每个服务可独立编译、打包、发布,支持持续交付(CI/CD)。
- 去中心化治理:允许服务采用不同技术栈(如Java、Go、Python)、数据库(MySQL、MongoDB)及中间件。
- 自治性:服务拥有独立的代码库、数据存储和运维流程,降低团队间耦合。
关键设计原则
- 高内聚低耦合:服务内部功能紧密相关,对外暴露明确API接口。
- 容错与弹性:通过熔断(如Hystrix)、重试、降级机制应对依赖服务故障。
- 自动化运维:依赖容器化(Docker)、编排工具(Kubernetes)实现自动化部署与扩缩容。
- 可观测性:集成日志聚合(ELK)、指标监控(Prometheus)、分布式追踪(Jaeger)确保系统透明。
2.2 微服务之间的通信模式
同步通信
- HTTP/REST
- 特点:基于文本的轻量级协议,易调试且跨语言支持广泛。
- 适用场景:面向外部API或对兼容性要求高的场景。
- gRPC
- 特点:基于HTTP/2的高性能RPC框架,支持流式通信和Protocol Buffers序列化。
- 适用场景:内部服务间高频调用(如支付服务与风控服务)。
异步通信
- 消息队列(Message Queue)
- 特点:通过发布-订阅模型解耦服务,支持削峰填谷、最终一致性。
- 常用工具:Kafka(高吞吐)、RabbitMQ(灵活路由)、RocketMQ(事务消息)。
- 示例:订单创建后发布事件至Kafka,库存服务消费事件并扣减库存。
- 事件驱动架构(EDA)
- 特点:服务通过事件广播状态变更(如OrderCreated、PaymentCompleted),触发下游业务逻辑。
- 技术栈:Apache Pulsar、AWS EventBridge。
- 通信保障机制
- 服务发现:通过Consul、Eureka或Kubernetes Service动态解析服务实例地址。
- 负载均衡:客户端(Ribbon)或服务端(Nginx)均衡流量。
- 熔断与降级:使用Resilience4j或Sentinel防止级联故障。
2.3 常见的微服务框架和技术栈
开发框架
-
Spring Cloud
- 核心组件:
- 服务注册与发现:Netflix Eureka、Consul。
- API网关:Spring Cloud Gateway、Zuul。
- 配置中心:Spring Cloud Config。
- 分布式追踪:Sleuth + Zipkin。
- 适用场景:Java生态下的全栈微服务解决方案。
- 核心组件:
-
Dubbo
- 特点:高性能RPC框架,支持多协议(Dubbo、gRPC)、服务治理(限流、权重路由)。
- 生态扩展:与Nacos(注册中心)、Sentinel(流量控制)深度集成。
基础设施与编排工具
-
Kubernetes
- 核心功能:
- 服务编排:Deployment管理Pod生命周期。
- 服务暴露:Service和Ingress提供内外网访问。
- 自动扩缩容:HPA基于CPU/内存或自定义指标扩缩实例。
- 核心功能:
-
服务网格(Service Mesh)
- 代表工具:Istio、Linkerd。
- 核心能力:
- 流量管理:A/B测试、金丝雀发布。
- 安全通信:mTLS加密、服务间身份认证。
- 可观测性:自动生成服务依赖拓扑图。
- 代表工具:Istio、Linkerd。
三、Prometheus基础回顾
3.1 Prometheus架构简述
核心架构设计
Prometheus 是一个开源的监控与告警系统,其架构围绕 拉取(Pull)模型 和 多维时间序列数据 构建,专为动态云原生环境(如 Kubernetes)设计。核心架构组件包括:
- Prometheus Server
- 抓取(Scrape):主动从配置的目标(如Exporter、应用端点)拉取指标数据。
- 存储(Storage):将数据存储在本地时序数据库(TSDB)中,支持高效查询与压缩。
- 存告警评估(Alert Evaluation):根据预定义规则触发告警并推送至Alertmanager。
- 服务发现(Service Discovery)
- 动态识别监控目标(如Kubernetes Pod、Consul服务),无需手动维护目标列表。
- 客户端库与Exporter
- 客户端库(Client Libraries):集成到应用中暴露自定义指标(如Go、Java、Python SDK)。
- Exporter:将第三方系统(如MySQL、Node)的指标转换为Prometheus格式。
工作流程示例
1. Prometheus Server 通过 Kubernetes API 发现所有带有注解 prometheus.io/scrape=true 的 Pod。
2. 定期(如每15秒)从这些 Pod 的 /metrics 端点拉取指标数据。
3. 存储数据到 TSDB,并通过 PromQL 查询分析指标(如计算错误率)。
4. 触发告警规则后,将告警信息发送至 Alertmanager 进行路由与通知。
3.2 主要组件介绍
组件 | 功能 | 典型应用场景 |
---|---|---|
Prometheus Server | 数据抓取、存储、告警评估的核心组件。 | 监控Kubernetes集群中的容器资源与微服务性能 |
Exporters | 将非Proemtheus原生系统的指标转换为兼容格式。 | Node Exporter:监控主机资源(CPU、内存)。 cAdvisor:监控容器指标。 |
Pushgateway | 缓存短暂任务(如CronJob)的指标,供Prometheus拉取。 | 监控批处理任务的执行状态(如每日报表生成)。 |
Alertmanager | 接收Prometheus的告警,进行去重、分组、静默,并通过邮件/Slack等渠道通知。 | 聚合微服务的高延迟或错误率告警,避免通知风暴。 |
Grafa | 可视化工具,通过PromQL查询并展示监控仪表盘。 | 构建统一的微服务健康状态视图(如API成功率、资源水位)。 |
组件协作示例
1. 微服务应用通过 Prometheus Client 暴露 /metrics 端点。
2. Prometheus Server 通过 Kubernetes 服务发现自动抓取这些端点。
3. Alertmanager 接收 HighErrorRate 告警,并配置邮件通知。
4. Grafana 通过查询 sum(rate(http_requests_total{status=“500”}[5m])) 展示错误请求趋势。
四、Kubernetes平台概览
4.1 Kubernets核心概览
定义与核心思想
Kubernetes(K8s)是开源的容器编排平台,用于自动化部署、扩缩和管理容器化应用。其核心设计围绕以下目标:
1. 自动化运维:自动调度容器、修复故障(如重启崩溃的Pod)、滚动更新。
2. 声明式配置:通过YAML/JSON定义应用期望状态(如副本数、资源限制)。
3. 可扩展性:支持自定义资源(CRD)、控制器(Operator)和插件(CNI、CSI)。
核心架构组件
组件 | 功能 |
---|---|
控制平面(Control Plane) | 集群的“大脑”,负责全局决策与状态管理。 |
API Server | 提供REST API入口,接收并验证所有操作请求(如kubectl命令)。 |
etcd | 分布式键值存储,持久化集群状态(如节点、Pod、Service配置)。 |
Scheduler | 决定Pod在哪个节点运行(基于资源需求、亲和性规则等)。 |
Controller Manager | 运行核心控制器(如Deployment、Node控制器),确保实际状态与期望状态一致。 |
工作节点(Worker Node) | 执行容器化应用的实际计算节点。 |
kubelet | 与API Server通信,管理节点上的Pod生命周期(创建、监控、销毁)。 |
kube-proxy | 维护节点网络规则(如Service的IPVS/iptables流量转发)。 |
容器运行时 | 负责运行容器(如Docker、containerd)。 |
典型工作流程示例
- 用户通过kubectl apply -f deployment.yaml提交一个Deployment配置。
- API Server将配置写入etcd,并触发Deployment控制器。
- Deployment控制器创建ReplicaSet,ReplicaSet控制器生成指定数量的Pod。
- Scheduler为每个Pod分配节点,kubelet拉取镜像并启动容器。
4.2 Kubernetes网络模型
Kubernetes网络模型遵循以下核心原则:
- Pod间直接通信:每个Pod拥有唯一IP(IP-per-Pod),无需NAT即可跨节点通信。
- Service抽象:通过ClusterIP、NodePort或LoadBalancer暴露服务,解耦Pod IP的动态变化。
- 网络插件化:由CNI(Container Network Interface)插件实现具体网络方案(如Calico、Flannel)。
组件 | 功能 |
---|---|
Pod Network | Pod内容器共享网络命名空间,通过localhost直接通信。 |
Service | 虚拟IP(VIP)和DNS名称,提供负载均衡与服务发现(如my-service.namespace.svc.cluster.local)。 |
Ingress | HTTP/HTTPS路由规则,暴露外部访问路径(如按域名分流到不同服务)。 |
Network Policy | 定义Pod间通信规则(如允许前端Pod访问后端数据库),需CNI插件支持(如Calico)。 |
通信模式示例
1. Pod-to-Pod通信:Pod A(IP 10.1.1.2)直接发送请求至Pod B(IP 10.1.2.3),由CNI插件处理跨节点路由。
2. Service流量转发:用户访问ClusterIP:80,kube-proxy通过iptables/IPVS将流量转发至后端Pod(如10.1.1.2:8080)。
3. Ingress外部访问:用户通过域名app.example.com访问,Ingress控制器(如Nginx)将请求路由至对应的Service。
4.3 Kubernetes存储机制
核心概念
Kubernetes通过抽象层管理存储,解耦应用与底层存储基础设施:
- Persistent Volume(PV):集群级别的存储资源(如NFS卷、云磁盘)。
- Persistent Volume Claim(PVC):用户对存储的请求(如“需要10GiB的SSD卷”)。
- Storage Class(SC):动态创建PV的模板(如按需创建AWS EBS卷)。
存储生命周期
- 静态配置:管理员手动创建PV,PVC绑定到现有PV。
- 动态配置:用户提交PVC时,Storage Class自动创建匹配的PV。
常用存储类型
类型 | 特点 | 适用场景 |
---|---|---|
EmptyDir | 临时卷,随Pod删除而销毁。 | 缓存或临时数据处理(如排序中间结果)。 |
HostPath | 挂载节点本地目录(慎用,可能引发节点依赖)。 | 单节点调试或访问宿主机设备(如GPU)。 |
NFS/GlusterFS | 网络文件系统,支持多节点读写。 | 共享配置文件或日志存储。 |
云存储(如EBS) | 云厂商提供的块存储,支持动态扩缩。 | 数据库持久化数据(如MySQL数据卷)。 |
五、Prometheus在Kubernetes中的部署方式
5.1 使用Helm Chart简化部署
Helm的作用与优势
Helm是Kubernetes的包管理工具,通过预定义的Chart(模板)简化Prometheus及其生态组件(Alertmanager、Grafana等)的部署流程,优势包括:
- 一键部署:自动配置核心组件与依赖项(如RBAC、ServiceMonitor)。
- 参数化配置:通过values.yaml文件覆盖默认参数(如存储类型、资源限制)。
- 版本管理:支持回滚到历史版本,确保部署可追溯。
适用场景
- 快速搭建监控环境,适合中小规模集群或测试环境。
- 需结合values.yaml自定义告警规则、Exporter配置。
注意事项
- helm版本要在3.7以上。
部署步骤示例
1. 添加Prometheus社区仓库:
helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
helm repo update
2. 安装Prometheus Stack(含Grafana、Alertmanager):
kubectl create ns prometheus
helm install prometheus prometheus-community/kube-prometheus-stack -n prometheus
3.验证部署
kubectl --namespace prometheus get pods -l "release=prometheus"
4.访问 Prometheus UI
默认情况下,Prometheus UI 不会暴露在外网中。你可以通过端口转发来访问它:
kubectl -n prometheus edit svc prometheus-kube-prometheus-prometheus
kubectl -n prometheus get svc prometheus-kube-prometheus-prometheus
5.2 通过Prometheus Operator自动化管理
Operator的核心能力
Prometheus Operator基于Kubernetes的Operator模式,通过自定义资源(CRD)自动化管理Prometheus实例,核心功能包括:
- 声明式配置:使用Prometheus、Alertmanager等CRD定义监控规则、存储策略。
- 动态适配:自动生成Prometheus配置(如prometheus.yml),响应集群变化(如Pod扩缩容)。
- 生命周期管理:自动处理Prometheus版本升级、配置重载。
使用ServiceMonitor和PodMonitor发现服务
资源类型 | 作用 | 示例场景 |
---|---|---|
ServiceMonitor | 通过关联Service,监控其背后所有Pod的指标(需Service指向Pod的端口)。 | 监控Deployment暴露的HTTP服务(如Nginx)。 |
PodMonitor | 直接监控Pod的指标,无需依赖Service(适用于无Service的StatefulSet或DaemonSet)。 | 监控日志采集器(如Fluentd DaemonSet)。 |
Servicemonitor 定义实例
mkdir k8s/prometheus -p
vi k8s/prometheus/ServiceMonitor-kube-controller-manager.yaml
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: kube-controller-manager
namespace: prometheus
spec:
selector:
matchLabels:
app: kube-prometheus-stack-kube-controller-manager # 匹配目标Service的标签
endpoints:
- port: metrics # Service中定义的端口名称
interval: 30s
path: /metrics
namespaceSelector:
any: true # 允许跨Namespace监控
PodMonitor 定义实例
kubectl label -n prometheus svc prometheus-prometheus-node-exporter app=node-exporter
vi k8s/prometheus/ServiceMonitor-node-exporter.yaml
apiVersion: monitoring.coreos.com/v1
kind: PodMonitor
metadata:
name: node-exporter
namespace: prometheus
spec:
selector:
matchLabels:
app: node-exporter
podMetricsEndpoints:
- port: metrics # Pod中定义的端口名称
path: /metrics
5.3 自定义资源定义(CRD)的作用
CRD的核心价值
- 扩展Kubernetes API:允许定义新的资源类型(如PrometheusRule、AlertmanagerConfig),将监控配置融入Kubernetes原生体系。
- 声明式管理:通过YAML文件版本化告警规则、数据抓取策略,实现GitOps流程。
- 自动化协调:Operator监听CRD变化,自动更新Prometheus配置并重载服务。
常用CRD类型
1. PrometheusRule:定义告警规则与记录规则。
vi k8s/prometheus/PrometheusRule-high-error-rate.yaml
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
name: high-error-rate
namespace: prometheus
spec:
groups:
- name: error-rules
rules:
- alert: HighHTTPErrorRate
expr: sum(rate(http_requests_total{status=~"5.."}[5m])) / sum(rate(http_requests_total[5m])) > 0.01
for: 10m
2. AlertmanagerConfig:自定义告警路由与通知渠道。
相关资料下载地址📚
- 官方文档:https://prometheus.io/docs/introduction/overview/
- 下载地址:https://github.com/prometheus/prometheus/releases/tag/v2.52.0
- 文档地址:https://prometheus.io/docs/prometheus/latest/installation/
- 离线包下载链接:https://pan.baidu.com/s/1ANF_AlFnM5_FMIbKBuzBmg 提取码:yqpt