OpenCV4.x图像处理实例-Lucas–Kanade微分算法目标轨迹追踪

本文介绍了Lucas-Kanade光流法,这是一种基于光流原理的特征点跟踪算法,常用于目标追踪。文章详细阐述了算法的三个基本假设,并通过OpenCV4.4.0提供的cv2.calcOpticalFlowPyrLK()函数展示了代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

06-Lucas–Kanade微分算法目标轨迹追踪

1. 前言

光流的概念最早是由Gibson在1950年提出的。它是空间移动物体在像素观察平面中移动的瞬时速度。是一种计算物体在相邻帧间运动信息的方法。

一般来说,光流(Optical Flow)是物体在三维空间中的运动在二维像平面上的投影。它是由物体和相机的相对速度产生的,反映了物体在极小时间内对应的图像像素的运动方向和速度。

Lucas–Kanade方法(KLT)是一种基于光流原理的特征点跟踪算法。

OpenCV是一个基于BSD

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉与物联智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值