数字图像处理与Python实现-Scikit-Image-图像特征(二)

本文介绍了Python的Scikit-Image库在图像特征提取中的应用,包括Hessian矩阵的特征值计算、HOG定向梯度直方图、LBP局部二元模式以及多种图像匹配方法如模板匹配和MB-LBP。这些方法在计算机视觉和图像分析中具有重要用途。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

7、Hessian 矩阵的特征值

feature模块的hessian_matrix_eigvals用于计算Hessian矩阵的特征值。在计算Hessian矩阵特征值之前,首先需要将矩阵转换成Hessian矩阵。Hessian矩阵的形式如下:

H = [Hrr Hrc]
[Hrc Hcc]

可以通过调用hessian_matrix函数来实现。

函数hessian_matrix_eigvals的原型如下:

skimage.feature.hessian_matrix_eigvals(H_elems)

参数说明如下:

  • H_elems:ndarray列表,Hessian 矩阵的上对角线元素,由函数hessian_matrix实现。

函数返回值为ndarray类型。Hessian 矩阵的特征值,按降序排列。 特征值是前导维度。 也就是说,eigs[i, j, k] 包含位置 (j, k) 处的第 i 个最大特征值。

使用示例如下:


                
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉与物联智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值