【RK3588 ROS2编程实例】-ROS2 Humble中使用激光雷达

ROS2 Humble中使用激光雷达


本文将详细介绍如何在OrangePi5开发板中搭建ROS2开发环境,并在ROS2环境中使用激光雷达。

1、硬件准备

本次实例将使用到如下硬件模块:

  • OrangePi5开发板(OrangePi5 B或OrangePi 5 Plus)(如果是OrangePi 5开发板,还需要WiFi模块)
  • YDLIDAR X2激光雷达

YDLIDAR X2激光雷达通过USB接口接入OrangePi 5开发板。

2、ROS2 Humble安装

本次实例将使用ROS2的版本为Humble,该版本为ROS2的长期版本,在Ubuntu 22.04中运行良好。在这时,我们在OrangePi 5开发板中使用的操作为官方提供的Ubuntu操作系统,该操作操作系统支持NPU、GPU,因此在使用ROS2的可视化时,能够进行硬件加速。

在这里插入图片描述

请下载桌面版本镜像安装。

2.1 使用集成脚本安装

在OrangePi5中,安装ROS2有两种方式,一种是OrangePi 5官方提供的ROS2安装脚本,另外一种是参

<think>我们正在处理一个关于机器人感知和建图的具体技术栈问题。用户询问的是在RK3588平台上使用ROS2 Humble,结合Mid360激光雷达和Fast-LIO2算法,以及Ego-Planner实现机器人的3D局部感知和3D栅格图重建。我们需要详细解释整个流程。 首先,我们分解各个组件: 1. **硬件平台:RK3588** - 这是一款ARM架构的处理器,常用于嵌入式系统和边缘计算。我们需要确保ROS2和相关算法可以在该平台上运行。 2. **ROS2 Humble** - ROS2的一个版本,支持Ubuntu 22.04。 3. **Mid360激光雷达** - 这是速腾聚创(RoboSense)的一款固态激光雷达,通常用于机器人导航和感知。 4. **Fast-LIO2算法** - 一个高效的激光雷达惯性里程计(LIO)算法,用于实时状态估计和建图。 5. **Ego-Planner** - 一种局部路径规划算法,特别适用于无人机的避障和导航,但也可用于地面机器人。 6. **3D局部感知和3D栅格图重建** - 目标是通过激光雷达数据实时构建环境的三维栅格地图,并用于局部感知(如避障)。 整个流程可以概括为: - 使用Mid360激光雷达获取点云数据。 - 通过Fast-LIO2算法进行激光雷达惯性里程计计算,实时估计机器人的位姿(位置和姿态),并同时构建全局地图(通常是点云地图)。 - 利用Ego-Planner进行局部路径规划,它需要实时的环境感知(即局部地图)来避开障碍物。 - 为了给Ego-Planner提供局部感知,我们需要将Fast-LIO2构建的全局地图转换为局部地图(通常是3D栅格地图,如OctoMap或VoxelGrid),并实时更新。 详细步骤: 1. **硬件准备与驱动安装** -RK3588上安装Ubuntu 22.04和ROS2 Humble- 安装Mid360的ROS2驱动。通常,速腾聚创提供ROS驱动包,需要从官方获取并编译。 - 确保IMU(惯性测量单元)的驱动也安装,因为Fast-LIO2需要激光雷达和IMU的数据。 2. **Fast-LIO2的安装与配置** - 从GitHub克隆Fast-LIO2ROS2版本(如果有)或者适配ROS2。注意:Fast-LIO2原版是为ROS1设计的,因此可能需要寻找ROS2的移植版本或自行移植。 - 编译安装,并配置Mid360和IMU的topic名称、标定参数等。 - 运行Fast-LIO2节点,它将订阅激光雷达点云和IMU数据,输出里程计(odometry)和全局点云地图。 3. **构建3D栅格地图(局部地图)** - Fast-LIO2输出的全局点云地图是稠密的,但为了局部感知,我们需要将其转换为3D栅格地图,并提取机器人周围的局部区域。 - 常用的工具是`octomap`,它可以将点云转换为八叉树地图(一种3D栅格地图)。在ROS2中,可以使用`octomap_server`(需要寻找ROS2版本或替代方案)来实时构建和更新全局/局部八叉树地图。 - 另一种方法是使用`voxel_grid`进行体素滤波,然后构建一个局部体素地图。 - 考虑到实时性,我们通常只维护机器人周围一定范围内的局部地图。可以通过截取全局地图中机器人周围区域(例如,以机器人当前位置为中心,边长为10m的立方体)来实现。 4. **Ego-Planner的集成** - Ego-Planner是一个基于B样条的轨迹规划算法,它需要实时的障碍物信息(即局部3D栅格地图)来生成无碰撞的路径。 -ROS2中,Ego-Planner节点订阅机器人的当前位置(来自Fast-LIO2的里程计)和局部地图(来自上一步的局部栅格地图),然后输出一条安全的轨迹。 - 将Ego-Planner输出的轨迹发送给机器人的控制器执行。 5. **系统整合与优化** - 将以上所有节点整合到一个启动文件中,确保数据流的正确性。 - 在资源受限的RK3588平台上,需要优化计算负载,例如降低点云地图的分辨率、减少局部地图的大小、调整算法参数等。 注意事项: - 由于RK3588是ARM架构,所有依赖包都需要ARM版本。 - 实时性要求:需要确保整个处理流程能够在机器人移动时实时运行。 代码示例(概念性,非完整): 由于具体代码非常复杂,这里给出节点间关系的示例: ```bash # 启动激光雷达驱动 ros2 launch rslidar_sdk start.py # 启动Fast-LIO2 ros2 launch fast_lio mapping.launch.py # 启动octomap_server构建全局地图并提取局部地图 # 注意:ROS2中可能需要使用nav2的voxel_grid或其他工具 ros2 launch octomap_server octomap_mapping.launch.py # 启动Ego-Planner ros2 launch ego_planner single_run_in_exp.launch.py ``` 在以上流程中,局部地图可以通过订阅`octomap_server`发布的局部地图话题(如`/local_map`)来获取,然后输入到Ego-Planner。 §§相关问题§§ 1. 在RK3588上安装ROS2 Humble有哪些注意事项? 2. 如何为Mid360激光雷达配置ROS2驱动? 3. Fast-LIO2算法在ROS2中如何移植和配置? 4. 如何将Fast-LIO2生成的点云地图转换为3D栅格地图(如OctoMap)? 5. Ego-Planner如何订阅局部地图并进行实时路径规划?</think>### 详细解释:RK3588-ROS2-Humble + Mid360激光雷达 + Fast-LIO2 + Ego-Planner 实现3D感知与建图 #### **1. 系统组成与工作流程** - **硬件平台**:RK3588(ARM架构处理器)运行Ubuntu 22.04 + ROS2 Humble- **传感器**:Mid360激光雷达(提供3D点云数据,扫描频率高,适合动态环境)。 - **核心算法**: - **Fast-LIO2**:基于迭代卡尔曼滤波的激光惯性里程计,实时融合IMU和激光数据,输出高精度位姿估计和全局点云地图。 - **Ego-Planner**:局部路径规划器,利用3D栅格地图进行实时避障和轨迹优化。 - **数据处理流程**: 1. Mid360发布原始点云数据(`/points`)。 2. Fast-LIO2订阅点云和IMU数据,输出: - 机器人位姿(`/odometry`) - 全局稠密点云地图(`/global_map`) 3. 点云地图转换为3D栅格地图(如OctoMap),通过`octomap_server`发布占用栅格(`/occupied_cells_vis_array`)。 4. Ego-Planner订阅栅格地图和位姿,生成无碰撞局部路径(`/trajectory`)。 #### **2. 3D局部感知实现** - **局部地图构建**: ```python # 伪代码:截取机器人周围的局部点云 def extract_local_map(global_map, robot_pose, radius=5.0): local_points = [] for point in global_map: if distance(point, robot_pose) < radius: local_points.append(point) return local_points ``` - **动态障碍物处理**:Fast-LIO2的增量式更新机制可实时移除动态物体点云。 - **栅格化**:使用`voxel_grid`过滤降采样后,通过`octomap`生成二进制占用栅格(0/1表示空闲/障碍)。 #### **3. 3D栅格地图重建** - **关键技术**: - **OctoMap**:八叉树结构存储3D栅格,高效压缩且支持概率更新。 - **地图更新逻辑**: ```cpp // 伪代码:基于新点云更新OctoMap for (const auto& point : new_scan) { octomap::point3d endpoint(point.x, point.y, point.z); tree.updateNode(endpoint, true); // 标记障碍物 tree.updateNode(robot_pose, false); // 标记自由空间 } ``` - **输出**:发布`nav_msgs/OccupancyGrid`消息,供规划器使用。 #### **4. Ego-Planner的集成** - **输入**:实时3D栅格地图 + Fast-LIO2位姿 + 目标点。 - **避障策略**: - 在栅格地图中检测碰撞体素。 - 使用B样条曲线优化轨迹,代价函数包含: - 障碍物距离惩罚 - 轨迹平滑度 - 动力学约束 - **输出**:平滑无碰撞的`nav_msgs/Path`轨迹。 #### **5. RK3588优化策略** - **计算加速**: - 启用RK3588 NPU加速点云滤波(如PCL的VoxelGrid)。 - 编译Fast-LIO2时启用`-march=armv8-a`指令集优化。 - **资源管理**: - 限制局部地图尺寸(如5m×5m×3m)。 - 降低OctoMap分辨率(0.1m体素)。 #### **6. 示例代码片段** ```cpp // Fast-LIO2 配置 (YAML) lio: pointcloud_topic: "/mid360/points" imu_topic: "/imu/data" map_resolution: 0.05 // Ego-Planner 配置 planner: local_map_topic: "/local_octomap" safety_distance: 0.3 max_vel: 1.5 // m/s ``` #### **7. 验证与调试** - **工具**: - RViz2可视化点云/栅格地图/轨迹。 - `ros2 bag record`录制数据回放测试。 - **指标**: - 里程计精度(ATE) - 规划器成功率(动态障碍场景) ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉与物联智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值