Python编程实例-使用Panda进行数据清洗

使用Panda进行数据清洗


Pandas是用于数据分析和操作的最广泛使用的Python库。但是,从源读取的数据通常需要一系列数据清洗步骤——在你能够分析它以获得洞察、回答业务问题或构建机器学习模型之前。

本文将使用pandas进行数据清洗的过程分解为7个实用步骤。我们将创建一个样本数据集并完成数据清洗步骤。

1、创建一个样本数据框

在我们开始实际的数据清洗步骤之前,让我们创建一个包含员工记录的pandas数据框。我们将使用Faker进行合成数据生成。所以首先安装它:

pip install Faker

在这里,你可以使用相同的示例进行操作。你也可以选择使用你选定的数据集。以下是生成1000条记录的代码:

import pandas as pd
from faker import Faker
import random

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉与物联智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值