Python笔记-方差分析之单因素方差分析

本文通过实例解析了如何使用单因素分析比较不同行业的股票年增长率,通过OLS模型和ANOVA检验,展示了如何在统计上判断行业间收益水平的显著性差异。数据示例中,p值小于0.05说明类型间的收益存在显著区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这个单因素分析一般是用来研究不同行业股票收益水平。

比如下面的代码:

from statsmodels.stats.anova import anova_lm
from statsmodels.formula.api import ols
import pandas as pd

df = pd.DataFrame(
    [
        [1.4, "one"], [1.5, "one"], [1.6, "one"], [0.1, "two"], [0.2, "two"], [0.3, "two"]
     ],
    columns=['rate', 'type']
)

if __name__ == '__main__':
    model = ols('rate ~type', data=df)
    data = model.fit()
    print(anova_lm(data))
    pass

运行截图如下:

 解释下数据:

df = pd.DataFrame(
    [
        [1.4, "one"], [1.5, "one"], [1.6, "one"], [0.1, "two"], [0.2, "two"], [0.3, "two"]
     ],
    columns=['rate', 'type']
)

这里one是一个类型,two是一个类型,前面的数据,代表年增长率。

解释下代码:

model = osl(‘样本某一列 ~ 样本另一列’)

table1= anova.anova_lm(model)

结果中可以知道,p=0.0000091,默认情况下显著水平为0.05,也就是0.05以上代表2个类型,很相似,无关性小,0.05以下,代表2个类型不相似,也就是说不同行业股票收益水平不同。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT1995

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值