《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》论文导读


版权声明

  • 本文原创作者:谷哥的小弟
  • 作者博客地址:http://blog.csdn.net/lfdfhl

在这里插入图片描述
《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》一文主要介绍了Batch Normalization(批标准化)的概念、原理及其在深度神经网络训练中的应用。

论文背景

深度神经网络在训练过程中,由于前面层的参数变化,会导致后面层输入的分布发生变化,这种现象被称为“Internal Covariate Shift”(内部协变量偏移)。这种偏移会使得网络训练变得复杂,需要较低的学习率和谨慎的参数初始化,从而减慢了训练速度,并可能导致模型难以收敛。为了解决这个问题,作者提出了Batch Normalization方法。

Batch Normalization的原理

Batch Normalization的基本思想是对每个mini-batch的数据进行归一化处理,使得网络层的输入具有相同的均值和方差。具体来说,对于每个mini-batch的输入数据,Batch Normalization会先计算其均值和方差,然后使用这些统计量对输入数据进行标准化处理。这个处理过程可以使得网络层的输入分布更加稳定,从而加速网络训练。

Batch Normalization的实现

在实现上,Batch Normalization被作为模型体系结构的一部分,插入到每个需要标准化的层之后。对于每个mini-batch的数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谷哥的小弟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值