该报告由国家信息中心与华为云联合发布,聚焦 “人工智能 +” 时代智慧城市发展范式创新,提出 AI CITY 发展框架与实践路径,核心内容如下:
一、战略形势:AI 驱动智慧城市升级
1、AI 技术突破
算力、数据、算法三要素夯实基础
:2024 年中国智能算力规模达 725.3 EFLOPS(同比 + 74.1%),数生产量 41.06 ZB(同比 + 25%),AI 专利申请量占全球 38.58%,语音 / 视觉识别技术世界领先。
政策密集支持:从 2017 年《新一代人工智能发展规划》到 2024 年《国家人工智能产业综合标准化体系建设指南》,形成从技术研发到应用落地的政策闭环。
2、智慧城市转型需求
治理现代化:AI 赋能 “平急结合” 治理模式,如通过数字孪生预演风险、大模型优化资源调度,提升城市韧性。
产业新质生产力:推动制造业智能化改造(如东莞 AI 大模型中心)、催生无人经济等新业态,助力传统产业向 “高端化、智能化、绿色化” 转型。
二、概念模型:AI CITY 的核心特征
1、定义:以 AI 为核心,融合连接、计算、云、区块链等技术,构建从感知智能到认知智能的城市级智能协同体系,实现 “数据驱动 + 深度学习” 的治理与服务模式。
2、三大特征
知识体系多维全面:打破数据孤岛,构建全量知识图谱,支持跨领域数据融合与智能调用。
交互入口集中便捷:通过 AI Agent(如智能助手)实现自然语言交互,替代传统分立式应用入口。
执行能力精准强大:自动拆解复杂任务,如通过大模型 + 场景模型协同,实现交通调度、应急响应等场景的智能决策。
三、体系架构:“1234MNX” 框架
1、1 个智能云底座
提供国产化算力支撑,采用 “以网强算” 架构优化算力调度(如 “朝推夜训” 错峰模式),实现算力资源 “普惠化”(即开即用)。
2、2 个保障体系
AI 安全:防护提示注入、数据泄露等风险,如通过 OWASP TOP10 for LLM 标准构建全流程安全机制。
AI 运维:实现故障快恢(MTTR 缩短)、风险识别(如高可用架构评估)和运维合规(人员与工具管理)。
3、3 套 AI 工程平台(大模型中心)
数据平台:支持多模态数据全生命周期管理,包括数据获取(如胶囊导入、OBS 导入)、加工(清洗、打标)、合成(问答对生成、指令泛化)及安全管控(血缘追溯、加密传输),提升数据处理效率与合规性。
AI 模型平台:集成模型训练(支持 LoRA 微调、强化学习)、压缩(量化技术降低推理资源占用)、部署(云边协同)及评测(可视化结果展示)全流程能力,适配 NLP、CV 等多领域需求。
AI 原生应用平台:提供模型中心(多模型效果对比)、知识中心(行业知识沉淀)、Agent 编排中心(千万级 Agent 架构)及资产中心(模板、数据集复用),降低应用开发门槛。
4、4 类运营体系
算力运营:通过 “算力水电” 模式实现弹性调度,2025 年目标算力利用率提升至 70% 以上,支持 “朝推夜训” 错峰机制。
模型运营:建立模型纳管机制,整合自研与第三方模型,通过一站式工具集优化训练 - 部署流程,降低企业使用成本。
数据运营:构建高质量数据集与可信数据空间,推动数据资产化,2024 年政务数据开放率目标达 80%。
产业生态运营:培育 “AI + 产业” 协同模式,如东莞制造业大模型中心带动产业链智能化升级。
5、M 类数据资源与 N 类模型资源
数据资源:汇聚金融、工业、医疗等多领域数据集,通过知识图谱构建城市级知识库,支持实时检索与推理。
模型资源:形成 “基础大模型 - 行业大模型 - 场景大模型” 三级体系,如医疗行业大模型聚焦精准诊断,工业质检场景模型实现缺陷识别效率提升 2-3 倍。
四、应用体系:AI 赋能城市全场景
1、数字经济
制造业:通过工业质检大模型实现缺陷检测自动化,如比亚迪生产线良率提升 5.2%。
新兴产业:低空经济、自动驾驶等场景依托多模态大模型优化决策,如深圳无人车路协同试点事故率下降 37%。数字政府
政务服务:AI 数字人提供 24 小时智能咨询,如克拉玛依市社工数字人使工单处理时间缩短 50%。
城市治理:广州白云区智慧城管通过大模型实现事件分拨准确率 95%,处置时效提升 1 倍。
2、数字社会
民生服务:AI 医疗大模型辅助基层诊断,如贵安新区远程问诊覆盖率达 92%。
公共安全:宜兴 “天机镜” 大模型整合城市生命线数据,预警准确率超 90%。
五、推进路径与保障措施
1、建设原则
自主可控:核心技术国产化率 2025 年目标达 70%,如东莞算力云平台采用全栈国产架构。
统筹集约:推行 “省市统建分用” 模式,避免重复建设,如粤港澳大湾区算力枢纽共享率提升至 65%。
开放兼容:构建 MaaS(模型即服务)生态,吸引超 200 家企业接入广州 AI 应用市场。
2、分类指导
设施建设:数字化基础薄弱地区优先部署边缘算力节点,如中西部城市 2026 年前实现区县级智算中心全覆盖。
场景落地:制造业强市聚焦工业大模型(如苏州),旅游城市侧重文旅 AI 应用(如杭州)。
3、保障措施
顶层规划:将 AI CITY 纳入 “十四五” 数字经济规划,建立跨部门协同机制。
资源整合:设立千亿级 AI 产业基金,2025 年目标带动社会资本投入超 5000 亿元。
六、创新实践:城市典型案例
东莞市:建设城市人工智能大模型中心,整合 100P 国产化算力,服务超 3000 家制造企业,工艺优化效率提升 28%。
广州市花都区:打造 “1+1+4” 工业互联网平台,推动汽车零配件行业数字化转型,企业研发周期缩短 40%。
深圳市福田区:构建 “四智” 融合城市智能体,通过视频解译大模型实现 90 + 场景实时监测,事件响应速度提升 60%。
七、核心结论与趋势
技术演进:AI CITY 将迈向 “大小模型协同 + 数字孪生闭环”,2028 年目标实现 90% 城市决策自动化。
生态构建:需强化 “政产学研用” 协同,如北京 “AI 原生城市” 试点带动产业链产值超万亿。
风险挑战:需警惕算法偏见、数据安全等问题,2025 年目标建立全行业 AI 伦理审查机制。
后台回复“250626A”,可获得下载资料的方法。
欢迎加入智能交通技术群!扫码进入。
后台回复“250626A”,可获得下载资料的方法。
联系方式:微信号18515441838