摘要
Advanced RAG 的后检索优化,是指在检索环节完成后、最终响应生成前,通过一系列策略与技术对检索结果进行深度处理,旨在显著提升生成内容的相关性与质量。在这些优化手段中,上文压缩与过滤技术是提升检索结果质量的重要手段。它能巧妙筛除冗余、无关信息,萃取关键内容,为后续处理奠定优质基础。本文将聚焦上文压缩与过滤技术展开深入探究,并依托功能强大的 LangChain 框架,具体阐释相关策略的实现路径,助力深入理解与应用这一关键技术。
上下文压缩原理说明
-
多元检索:利用各类基础检索器,如基于关键词匹配的传统检索器、向量检索器等。这些检索器从不同数据源(如文档库、知识库等)获取与问题相关的信息。比如在一个企业知识问答场景中,向量检索器可从企业内部文档向量数据库中找出语义相关的文档片段,关键词检索器则可定位包含特定业务术语的资料。
-
信息汇聚:将从不同检索器获取到的信息整合到文档压缩器中。此时,收集到的信息可能包含大量冗余、不相关或重复的内容。例如,多个检索器可能返回关于同一主题但表述略有差异的段落。
-
精准过滤提取:文档压缩器运用多种技术对输入信息进行处理。一方面,通过文本分类、关键词提取等方法判断信息与问题的相关性,剔除明显无关的内容;另一方面,利用摘要算法,如抽取式摘要或生成式摘要技术,提炼出关键信息。比如对于一个关于 “如何优化电商网站用户体验” 的问题,压缩器会过滤掉电商运营中物流配送等无关信息,提取页面布局优化、交