基于LangChain 实现 Advanced RAG-后检索优化(下)-上下文压缩与过滤

摘要

        Advanced RAG 的后检索优化,是指在检索环节完成后、最终响应生成前,通过一系列策略与技术对检索结果进行深度处理,旨在显著提升生成内容的相关性与质量。在这些优化手段中,上文压缩与过滤技术是提升检索结果质量的重要手段。它能巧妙筛除冗余、无关信息,萃取关键内容,为后续处理奠定优质基础。本文将聚焦上文压缩与过滤技术展开深入探究,并依托功能强大的 LangChain 框架,具体阐释相关策略的实现路径,助力深入理解与应用这一关键技术。

上下文压缩原理说明

  • 多元检索:利用各类基础检索器,如基于关键词匹配的传统检索器、向量检索器等。这些检索器从不同数据源(如文档库、知识库等)获取与问题相关的信息。比如在一个企业知识问答场景中,向量检索器可从企业内部文档向量数据库中找出语义相关的文档片段,关键词检索器则可定位包含特定业务术语的资料。

  • 信息汇聚:将从不同检索器获取到的信息整合到文档压缩器中。此时,收集到的信息可能包含大量冗余、不相关或重复的内容。例如,多个检索器可能返回关于同一主题但表述略有差异的段落。

  • 精准过滤提取:文档压缩器运用多种技术对输入信息进行处理。一方面,通过文本分类、关键词提取等方法判断信息与问题的相关性,剔除明显无关的内容;另一方面,利用摘要算法,如抽取式摘要或生成式摘要技术,提炼出关键信息。比如对于一个关于 “如何优化电商网站用户体验” 的问题,压缩器会过滤掉电商运营中物流配送等无关信息,提取页面布局优化、交

### Naive RAGAdvanced RAG对比 #### 定义发展历程 Naive RAG代表早期阶段的检索增强生成(Retrieval-Augmented Generation),其主要特点是简单直接地结合预训练的语言模型和信息检索机制来完成特定任务。随着技术的进步,从Naive RAG进化到了更为先进的形式——即所谓的Agentic RAG,在这一过程中实现了质的变化和发展[^1]。 #### 关键特性比较 - **灵活性** Agentic RAG展示了更高的智能化水平以及更强的任务适应能力,能够更好地应对复杂的查询需求并提供精准的结果反馈;而Naive版本则相对固定模式化操作较多。 - **智能程度** 基于代理的方法被引入到高级别的RAG体系里之后,极大地提高了系统的自主决策能力和环境交互效率,使其不仅仅局限于简单的数据匹配过程,而是可以主动探索最优解路径。 - **应用场景广度** 高级形态下的RAG解决方案由于具备上述优势特征,因此能够在更多领域内找到实用价值,比如自然语言理解、机器翻译等方面均展现出良好的潜力和发展空间。 #### 实现方式差异 对于两种不同层次的RAG架构而言,其实现在技术和算法层面也有着明显的区别: - **基础组件集成** 初级版通常依赖较为传统的搜索引擎作为外部知识源接入手段,并采用固定的编码器结构来进行文档表示学习;相比之下,改进型方案会利用最新的研究成果优化各部分设计,如尝试多种嵌入模型以提高召回率和准确性[^3]。 - **参数规模扩展** 当涉及到更大规模的数据集或更高性能的要求时,现代研究趋势表明增加模型参数量有助于保持甚至提升整体表现力[Wang et al., 2023b][^2]。这意味着在构建高效能的RAG系统时,合理调整内部神经网络尺寸成为了一个不可忽视的因素之一。 ```python # 示例代码片段展示如何定义一个基本的RAG类 class BasicRAG: def __init__(self, encoder_model='bert-base'): self.encoder = Encoder(encoder_model) def retrieve(self, query): # 执行简单的检索逻辑 pass def generate_response(self, retrieved_docs): # 结合检索结果生成回复文本 pass # 对应地,这里给出一个更复杂的Agentic RAG实现概览 from transformers import AutoModelForSeq2SeqLM class AdvancedRAG(BasicRAG): def __init__(self, agent_policy=None, large_encoder='t5-large', *args, **kwargs): super().__init__(*args, **kwargs) self.agent_policy = AgentPolicy(agent_policy) if agent_policy else None self.large_encoder = LargeEncoder(large_encoder) def adaptive_retrieve(self, query_context_pair): # 应用策略指导下的动态检索流程 action = self.agent_policy.decide(query_context_pair) docs = self.retrieve_with_action(action) return docs def enhanced_generate(self, doc_list): # 考虑上下文关联性的响应合成方法 response = "" for doc in doc_list: part_resp = self.generate_based_on(doc) response += f"{part_resp} " return response.strip() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

找了一圈尾巴

你的鼓励将是我创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值