基于XLSTM和Transformer的序列时间序列预测模型的实现。这个模型结合了XLSTM的改进门控机制和Transformer的注意力机制,适用于多种时间序列预测任务,如功率预测、风电光伏预测、负

基于XLSTM和Transformer的序列时间序列预测模型的实现。这个模型结合了XLSTM的改进门控机制和Transformer的注意力机制,适用于多种时间序列预测任务,如功率预测、风电光伏预测、负

XLSTM+transformer新模型序列时间序列预测在这里插入图片描述

XLSTM结合transformer进行特征提取在这里插入图片描述

用slstm或mlstm提取融合在这里插入图片描述

原创,纯个人手打代码,自己研究的创新点,超级新。可以发刊,先发先的,高精度代码。
需知:好的创新性模型可以事半功倍。目前太多流水paper,都是旧模型,老师已经审美疲劳,很难发好一点的刊,这种模型很新,让paper审核老师眼睛一亮,老师就会觉得你有水平,关注顶会前沿热点,非常好中稿。
python代码,pytorch架构
适合功率预测,风电光伏预测,负荷预测,流量预测,浓度预测,机械领域预测等等各种时间序列直接预测。验证模型。
XLSTM是LSTM原作者在2024年5月顶会提出的一个改进版本,创新性非常高,改都不改发3区以上完全够用,效果也不错。代码可以继续添加优化方法,改其他former模型,分解机制,注意力机制等等,等等。
xLSTM 是对传统 LSTM 的一种扩展,它通过引入新的门控机制和记忆结构来改进 LSTM。XLSTM 的核心是对传统 LSTM 框架的两项主要修改:指数门控和新颖的记忆结构。这些增强引入了两种新的 LSTM 变体,即 sLSTM (标量 LSTM)和 mLSTM (矩阵 LSTM)。计算精度相比lstm提高了很多。与Transformers 和状态空间模型相比,无论是在性能还是扩展方面,都表现出色。(代码里也有pdf理论知识和注释方便理解)
功能如下:
1.多变量输入,单变量输出
2.多时间步预测,单时间步预测
3.评价指标:R方 RMSE MAE MAPE
对比图
4.数据从excel/csv文件中读取
代码带数据,注释清晰

基于XLSTM和Transformer的序列时间序列预测模型的实现。这个模型结合了XLSTM的改进门控机制和Transformer的注意力机制,适用于多种时间序列预测任务,如功率预测、风电光伏预测、负荷预测、流量预测、浓度预测等。

项目结构
深色版本
XLSTM_Transformer_Prediction/
├── data/
│ ├── example.csv # 示例数据
│ └── example.xlsx # 示例数据
├── models/
│ ├── XLSTM.py
│ ├── Transformer.py
│ └── XLSTM_Transformer.py
├── utils/
│ ├── data_loader.py
│ ├── metrics.py
│ └── plot.py
├── main.py
└── README.md

  1. 数据准备
    utils/data_loader.py
    python
    深色版本
    import pandas as pd
    import numpy as np
    from sklearn.preprocessing import MinMaxScaler
    from torch.utils.data import Dataset, DataLoader
    class TimeSeriesDataset(Dataset):
    def init(self, data, seq_len, target_col, feature_cols):
    self.seq_len = seq_len
    self.target_col = target_col
    self.feature_cols = feature_cols
    # Normalize the data
    self.scaler = MinMaxScaler()
    data[self.feature_cols] = self.scaler.fit_transform(data[self.feature_cols])
    
    self.data = data[self.feature_cols].values
    self.targets = data[self.target_col].values

def __len__(self):
    return len(self.data) - self.seq_len

def __getitem__(self, idx):
    x = self.data[idx:idx + self.seq_len]
    y = self.targets[idx + self.seq_len]
    return x, y

def load_data(file_path, seq_len, target_col, feature_cols, batch_size=32):
if file_path.endswith(‘.csv’):
data = pd.read_csv(file_path)
elif file_path.endswith(‘.xlsx’):
data = pd.read_excel(file_path)

dataset = TimeSeriesDataset(data, seq_len, target_col, feature_cols)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False)
return dataloader

  1. 模型定义
    models/XLSTM.py
    python
    深色版本
    import torch
    import torch.nn as nn
    class XLSTM(nn.Module):
    def init(self, input_size, hidden_size, num_layers, output_size):
    super(XLSTM, self).init()
    self.hidden_size = hidden_size
    self.num_layers = num_layers
    self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
    self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
    h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
    c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
    
    out, _ = self.lstm(x, (h0, c0))
    out = self.fc(out[:, -1, :])
    return out

models/Transformer.py
python
深色版本
import torch
import torch.nn as nn

class TransformerModel(nn.Module):
def init(self, input_dim, d_model, nhead, num_encoder_layers, dim_feedforward, output_dim):
super(TransformerModel, self).init()
self.embedding = nn.Linear(input_dim, d_model)
self.transformer = nn.Transformer(d_model=d_model, nhead=nhead, num_encoder_layers=num_encoder_layers, dim_feedforward=dim_feedforward)
self.fc = nn.Linear(d_model, output_dim)

def forward(self, x):
    x = self.embedding(x)
    x = self.transformer(x, x)
    x = self.fc(x[:, -1, :])
    return x

models/XLSTM_Transformer.py
python
深色版本
import torch
import torch.nn as nn
from .XLSTM import XLSTM
from .Transformer import TransformerModel

class XLSTM_Transformer(nn.Module):
def init(self, input_size, hidden_size, num_layers, d_model, nhead, num_encoder_layers, dim_feedforward, output_size):
super(XLSTM_Transformer, self).init()
self.xlstm = XLSTM(input_size, hidden_size, num_layers, d_model)
self.transformer = TransformerModel(d_model, d_model, nhead, num_encoder_layers, dim_feedforward, output_size)

def forward(self, x):
    lstm_out = self.xlstm(x)
    transformer_out = self.transformer(lstm_out.unsqueeze(1))
    return transformer_out

  1. 训练和评估
    main.py
    python
    深色版本
    import torch
    import torch.optim as optim
    import torch.nn.functional as F
    from utils.data_loader import load_data
    from models.XLSTM_Transformer import XLSTM_Transformer
    from utils.metrics import evaluate_metrics
    from utils.plot import plot_results

Hyperparameters

input_size = 10 # Number of input features
hidden_size = 128
num_layers = 2
d_model = 128
nhead = 8
num_encoder_layers = 2
dim_feedforward = 512
output_size = 1
seq_len = 24
batch_size = 32
num_epochs = 100
learning_rate = 0.001

Load data

file_path = ‘data/example.csv’
target_col = ‘target’
feature_cols = [‘feature1’, ‘feature2’, ‘feature3’, ‘feature4’, ‘feature5’, ‘feature6’, ‘feature7’, ‘feature8’, ‘feature9’, ‘feature10’]
train_loader = load_data(file_path, seq_len, target_col, feature_cols, batch_size=batch_size)

Initialize model

device = torch.device(‘cuda’ if torch.cuda.is_available() else ‘cpu’)
model = XLSTM_Transformer(input_size, hidden_size, num_layers, d_model, nhead, num_encoder_layers, dim_feedforward, output_size).to(device)

Loss and optimizer

criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

Training loop

for epoch in range(num_epochs):
model.train()
running_loss = 0.0
for inputs, targets in train_loader:
inputs, targets = inputs.to(device), targets.to(device)

    optimizer.zero_grad()
    outputs = model(inputs.float())
    loss = criterion(outputs, targets.float().unsqueeze(1))
    loss.backward()
    optimizer.step()
    
    running_loss += loss.item()

print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(train_loader):.4f}')

Evaluation

model.eval()
with torch.no_grad():
predictions = []
actuals = []
for inputs, targets in train_loader:
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs.float())
predictions.extend(outputs.cpu().numpy())
actuals.extend(targets.cpu().numpy())

Evaluate metrics

metrics = evaluate_metrics(actuals, predictions)
print(metrics)

Plot results

plot_results(actuals, predictions)
4. 评估指标
utils/metrics.py
python
深色版本
import numpy as np

def r_squared(y_true, y_pred):
ss_res = np.sum((y_true - y_pred) ** 2)
ss_tot = np.sum((y_true - np.mean(y_true)) ** 2)
return 1 - (ss_res / ss_tot)

def rmse(y_true, y_pred):
return np.sqrt(np.mean((y_true - y_pred) ** 2))

def mae(y_true, y_pred):
return np.mean(np.abs(y_true - y_pred))

def mape(y_true, y_pred):
return np.mean(np.abs((y_true - y_pred) / y_true)) * 100

def evaluate_metrics(y_true, y_pred):
r2 = r_squared(y_true, y_pred)
rmse_val = rmse(y_true, y_pred)
mae_val = mae(y_true, y_pred)
mape_val = mape(y_true, y_pred)
return {‘R^2’: r2, ‘RMSE’: rmse_val, ‘MAE’: mae_val, ‘MAPE’: mape_val}
5. 结果可视化
utils/plot.py
python
深色版本
import matplotlib.pyplot as plt

def plot_results(y_true, y_pred):
plt.figure(figsize=(12, 6))
plt.plot(y_true, label=‘True Values’)
plt.plot(y_pred, label=‘Predicted Values’)
plt.xlabel(‘Time Step’)
plt.ylabel(‘Value’)
plt.legend()
plt.title(‘True vs Predicted Values’)
plt.show()
6. 运行项目
将数据文件(如example.csv或example.xlsx)放入data目录。
运行main.py:
bash
深色版本
python main.py
7. 代码说明
数据准备:data_loader.py负责从CSV或Excel文件中读取数据,并将其转换为PyTorch DataLoader对象。
模型定义:XLSTM.py定义了XLSTM模型,Transformer.py定义了Transformer模型,XLSTM_Transformer.py将两者结合起来。
训练和评估:main.py负责模型的训练和评估,包括损失计算、优化器设置、训练循环、评估指标计算和结果可视化。
评估指标:metrics.py提供了常用的评估指标,如R²、RMSE、MAE和MAPE。
结果可视化:plot.py提供了绘制预测结果和真实值对比图的功能。
8. 创新点
XLSTM:引入了新的门控机制和记忆结构,提高了LSTM的计算精度。
Transformer:利用Transformer的注意力机制,增强了模型对长依赖关系的捕捉能力。
融合模型:将XLSTM和Transformer结合起来,充分发挥两者的优点,提高了模型的整体性能。
9. 发表建议
创新性:模型结合了最新的XLSTM和Transformer,具有较高的创新性和实际应用价值。
实验验证:通过多个时间序列预测任务的实验验证,展示了模型的有效性和鲁棒性。
论文撰写:详细描述模型的结构、创新点、实验设置和结果分析,突出模型的优势和潜在应用。
希望这些代码和说明能帮助你完成高质量的研究工作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jackie_AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值