AP、MAP、IOU、Precision、Recall 、FPR、TPR、 FAR、EER、ROC 、AUC等

本文详细解释了机器学习和目标检测中的关键评估指标,如AP(平均精度)、MAP(平均精度均值)、IOU(交并比)、精度和召回率,以及FPR、TPR、FAR和EER在人脸识别中的应用。此外,还讨论了ROC曲线和AUC的重要性,并介绍了非极大值抑制(NMS)在减少重叠预测框中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 一张图像的C类的P=图像正确预测(True Positives)的数量  除以  在图像中这一类的总目标数量。

1 AP

C类的平均精度=在验证集上所有的图像对于类C的精度值的和  除以  有类C这个目标的所有图像的数量。 

 

2 MAP

MAP = 所有类别的平均精度求和  除以  所有的类别 。

 

3 IOU

loU(交并比)是模型所预测的检测框和真实(ground truth)的检测框的交集和并集之间的比例。

 

4 acc

acc = 正确预测的正反例数 / 总数

注:分对的样本数除以所有的样本数。

一般用来评估模型的全局准确程度,不能包含太多信息。单独使用acc,无法全面评价一个模型性能。

 

5 Precision   Recall 

### TP、FP、FN、IOUPrecisionRecall 的定义及计算 #### True Positive (TP) True Positive 表示被正确识别为正类别的实例数量。当模型预测某个样本属于某一类别,并且该预测是正确的,则这个预测记作 true positive。 #### False Positive (FP) False Positive 指的是错误地将负类别标记为正类别的次数。如果模型预测某一样本属于特定类别但实际上不属于此类别,那么这会被视为 false positive。 #### False Negative (FN) False Negative 发生在实际应归属于正类别的样本未被正确分类的情况下。即模型未能成功检测到真正的正样例时发生的情况。 #### Intersection over Union (IoU) Intersection Over Union 是一种用于测量两个边界框重叠程度的标准度量单位。其公式如下: \[ \text{IoU} = \frac{\text{Area of overlap}}{\text{Area of union}} \] 其中,“overlap area”是指两个矩形区域相交部分的面积;而“union area”则是指这两个矩形总面积之和减去它们之间共同覆盖的部分[^2]。 ```python def iou(box_a, box_b): # Calculate intersection coordinates inter_x1 = max(box_a[0], box_b[0]) inter_y1 = max(box_a[1], box_b[1]) inter_x2 = min(box_a[2], box_b[2]) inter_y2 = min(box_a[3], box_b[3]) # Compute the width and height of the intersection rectangle inter_w = max(0, inter_x2 - inter_x1 + 1) inter_h = max(0, inter_y2 - inter_y1 + 1) inter_area = inter_w * inter_h # Separately calculate each bounding box's area a_area = (box_a[2] - box_a[0] + 1) * (box_a[3] - box_a[1] + 1) b_area = (box_b[2] - box_b[0] + 1) * (box_b[3] - box_b[1] + 1) # Return IoU value return float(inter_area) / (a_area + b_area - inter_area) ``` #### Precision(精确率) Precision 描述了所有预测为正类的结果中有多少确实是正类的比例。它反映了模型做出肯定判断时的信心水平。计算公式为: \[ \text{Precision}=\frac{\mathrm {TP}} {\mathrm {TP}+\mathrm {FP}} \] #### Recall(召回率) Recall 则关注于所有真实存在的正类中有多大比例被准确找出。这是衡量算法能否有效发现目标对象的重要标准之一。计算方式如下所示: \[ \text{Recall}= \frac{\mathrm {TP}} {\mathrm {TP}+\mathrm {FN}} \] 上述各项指标构成了评估机器学习尤其是深度学习领域内物体检测任务效果的基础工具集[^1]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jackilina_Stone

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值