MXNet导入np(numpy)模块和npx(numpy_extension)模块。 np模块包含NumPy支持的函数; 而npx模块包含一组扩展函数,用来在类似NumPy的环境中实现深度学习开发。 当使用张量时,几乎总是会调用set_np函数,这是为了兼容MXNet的其他张量处理组件。
首先,我们可以使用 arange 创建一个行向量 x。这个行向量包含以0开始的前12个整数,它们默认创建为浮点数。张量中的每个值都称为张量的 元素(element)。例如,张量 x 中有 12 个元素。除非额外指定,新的张量将存储在内存中,并采用基于CPU的计算。
通过一个例子来看看:
from mxnet import np, npx
npx.set_np()
x = np