数组有以下常见的几种算法:
- 冒泡排序法
- 快速排序法
- 二分查找法
(1)冒泡排序
思想:
-
比较相邻的元素。如果第一个比第二个大,就交换他们两个。
-
对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
-
针对所有的元素重复以上的步骤,除了最后一个。
-
持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
例子一:
public class TestArray {
public static void main(String[] args) {
int[] arr = {6,3,2,8,9,1};
System.out.println("排序前数组是:");
for (int num:arr) {
System.out.print(num+" ");
}
for (int i = 0; i < arr.length-1; i++) {//外层循环控制排序趟数
for (int j = 0; j < arr.length-1-i; j++) {//内层循环控制每一趟排序多少次
if (arr[j] > arr[j+1]){
int temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
}
}
}
System.out.println();//换行
System.out.println("排序后的数组是:");
for (int num:arr) {
System.out.print(num+" ");
}
}
}
例子二:
public class MaoPaoSort {
public static void maoPaoSort(int[] arr){
//冒泡排序
for(int i = 0; i < arr.length; i++){
for(int j = 0; j < arr.length-1-i; j++){
if(arr[j] > arr[j+1]){
int temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
}
}
}
PrintArray.printArray(arr);
}
}
(2)快速排序法
思想:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
例子一:
public static int partition(int []array,int lo,int hi){
//固定的切分方式
int key = array[lo];
while(lo < hi){
while(array[hi] >= key && hi > lo){//从后半部分向前扫描
hi--;
}
array[lo] = array[hi];
while(array[lo] <= key && hi > lo){从前半部分向后扫描
lo++;
}
array[hi] = array[lo];
}
array[hi] = key;
return hi;
}
public static void sort(int[] array,int lo ,int hi){
if(lo >= hi){
return ;
}
int index = partition(array,lo,hi);
sort(array,lo,index - 1);
sort(array,index + 1,hi);
}
例子二:
public int getMiddle(Integer[] list, int low, int high) {
int tmp = list[low]; //数组的第一个作为中轴
while (low < high) {
while (low < high && list[high] > tmp) {
high--;
}
list[low] = list[high]; //比中轴小的记录移到低端
while (low < high && list[low] < tmp) {
low++;
}
list[high] = list[low]; //比中轴大的记录移到高端
}
list[low] = tmp; //中轴记录到尾
return low; //返回中轴的位置
}
(3)二分查找法
思想:二分查找也称折半查找(Binary Search)(前提:是个有序数组)
二分查找法实质上是不断地将有序数据集进行对半分割,并检查每个分区的中间元素
过程:二分查找的基本思想是将n个元素分成大致相等的两部分,取a[n/2]与x做比较,如果x=a[n/2],则找到x,算法中止;如果x<a[n/2],则只要在数组a的左半部分继续搜索x,如果x>a[n/2],则只要在数组a的右半部搜索x
例子:
/**
* 二分法查找数据
* */
public int binarySearch(long value) {
int middle = 0;
int low = 0;
int pow = elements;
while(true) {
middle = (pow + low) / 2;
if(arr[middle] == value) {
return middle;
} else if(low > pow){
return -1;
} else {
if(arr[middle] > value) {
pow = middle - 1;
} else {
low = middle + 1;
}
}
}
}
package array;
public class TestMyArray {
public static void main(String[] args) {
MyOrderArray arr = new MyOrderArray();
arr.insert(90);
arr.insert(70);
arr.insert(200);
arr.insert(500);
arr.display();
System.out.println(arr.binarySearch(70));
}
}
4.数组的转置
范例:实现数组的转置(首位交换)
下面首先来解释一下转置的概念( 一维数组实现)。
原始数组: 1、2, 3, 4、5、6、7、8;
转置后的数组: 8、7、6、5、4、3、2、1。
• 解决思路一:首先定义一个新的数组, 然后将原始数组按照倒序的方式插入到新的数组中, 最后
改变原始数组引用, 将其指向新的数组空间。
public class ArrayDemo{
public static void main(String args[]){
int data[] = new int[]{1,2,3,4,5,6,7,8};
int temp[] = new int[data.length];//首先定义一个新的数组,长度与原始数组一致;
int foot = data.length - 1;//控制data数组的索引
for(int x = 0 ; x < temp.length ; x ++){//对于新的数组按照索引由小到大的顺序循环
temp[x] = data[foot];
foot --;
}//此时tmep的内容就是转置后的结果
data = temp;//让data指向temp,而data的原始数据称为垃圾
print(data);//输出数组
}
public static void print(int temp[]){//专门定义一个输出功能的方法
for(int x = 0 ; x < temp.length ; x ++){
System.out.print(temp[x] + "、");
}
System.out.println();
}
}
本程序首先为了实现数组的转置操作专门定义了一个temp的int型数组, 然后采用倒序的方式将
data数组中的内容依次设置到temp数组中, 最后修改data的引用(会产生垃极空间)就可以实现数组
的转置操作。
虽然以上代码实现了转置的操作, 但是遗憾的是, 代码里面会产生垃圾。而在进行程序开发的过程
中应该尽可能少地产生垃圾空间, 所以这样的实现,思路并不是最合理的。
• 解决思路二:利用算法, 在一个数组上完成转置操作,但是此时需要为读者分析数组长度是奇数
还是偶数的情况。
数组长度为偶数, 转换次数计算公式:数组长度.;- 2
原始数组: 1、2、3、4 、5、6 今转换次数为:6 /2 = 3
第一次转置:6、2、3、4、5、1
第二次转置:6、5、3、4 、2、1
第三次转置:6、5、4、3、2、l
数组长度为奇数, 转换次数计算公式数组长度.;/2 (不保留小数)
原始数组: 1、2, 3, 4、5 、6、7->转换次数为:7 / 2 = 3 ( int型数据除法不保留小数)
第一次转置:7 、2、3, 4 、5 、6、1;
第二次转置:7、6、3、4、5、2、1;
第三次转置:7、6、5、4、3、2、l。
通过分析可以发现, 不管数组的长度是奇数的个数还是偶数的个数, 转置的次数的计算方式是完全
一样的, 但是此时还需要有两个索引标曰:头部索引标记(head)、尾部索引标记( tail). 共同作用才可
以实现数据的交换,
代码实现如下。
public class TestArray{
public static void main(String args[]){
int data[] = new int[]{(1,2,3),(4,5,6),(7,8,9)};
reverse(data);
print(data);
}
public static void reverse(int arr[][]){
for(int x = 0 ; x < arr.length ; x ++){
for(int y = x ; y < arr.length ; y ++){
if(x != y){
int temp = arr[x][y];
arr[x][y] = arr[y][x];
arr[y][x] = temp;
}
}
}
public void main print(int temp[]){
for (int x = 0 ; x < temp.length ; x ++) {
System.out.print(temp[x],"、");
}
System.out.println();
}
}
}
本程序为了实现转置, 专门定义了一个reverse()方法, 在本方法中首先计算要进行转置的次数, 然
后利用循环实现数据的交换, 这样就可以实现在一个数组上的数据转置, 也不会有垃坡空间产生。
二维数组的转置
public class ArrayDemo{
public static void main(String args[]){
int data[][] = new int [][]{
{1,2,3},{4,5.6},{7,8,9}
};
reverse(data);
print(data);
}
public static void reverse(int arr[][]){
for(int x = 0 ; x < arr.length ; x ++){
if(x!=y){
int temp = arr[x][y];
arr[x][y] = arr[y][x];
arr[y][x] = temp;
}
}
}
public static void print(int temp[][]){
for(int x = 0 ; x < temp.length ; x ++){
for(int y = 0; y < temp[x].length ; y ++){
System.out.print(temp[x][y]+"、");
}
System.out.println();
}
System.out.println();
}
}
以上只是几种常见简单的算法,现在只是对此算法的大概了解,往后会对各个常见的算法进行深入的研究;
5.我们不仅仅只是单纯的为了实现此功能,还要考虑多方面因素,比如性能效率方面;
- 如果要谈性能,我们需要先对复杂度有个了解,熟悉,才能方便下面的理解;
(1)数组是一种线性表数据结构。它用一组连续的内存空间,来存储一组具有相同类型的数据。
(2)连续的内存空间和相同类型的数据。正是因为这两个限制,它才有了一个堪称“杀手锏”的特性:“随机访问”。
但是有利必有弊,这两个限制也让数组操作变得非常低效,比如要想数组中删除、插入一个数据,为了保证连续性,就需要
做大量得数据搬移工作。
- 数组如何实现下标随机访问数组元素呢?
我们拿一个长度为10的int类型的数组int[] a = new int[10]来举例。
计算机给数组a[10],分配一块连续内存空间1000~1039,其中,内存块的首地址为base_address = 1000.
计算机会给每个内存单元分配一个地址,计算机通过地址来访问内存中的数据。当计算机需要随机访问数组中的某个元素时,
它会首先通过下面的寻址公式,计算出该元素存储的内存地址:
a[i]_address = base_address + i * data_type_size
其中data_type_size表示数组中每个元素的大小。
我么们举的这个例子里,数组中存储的是int类型数据,所以data-type_size就为4个字节。、
数组主持随机访问,根据下表随机访问的时间复杂度为O(1).
- 低效的“插入”和“删除”
数组为了保持内存数据的连续性,会导致插入、删除这两个操作比较低效。现在我们就来详细说一下,究竟为什么会导致低效?有那些改进的方法吗?
(1)插入操作
假设数组的长度为n,现在,如果我们需要将一个数插入到数组中的第k个位置。为了把第k个位置腾出来,给新来的数据,我们需要将
第k~n这部分的元素都顺序地往后挪一位,那插入操作的时间复杂度是多少呢?
如果在数组的尾部插入元素,那就不需要移动数据了,这时的时间复杂度为O(1),但如果在数组的开头插入元素,那所有的数据都需要
往后移动一位,所以最坏时间复杂度为O(n).因为我们在每个位置插入元素的概念是一样的,所以平均情况时间复杂度为(1+2...n)/n=O(n).
r如果数组中的数据是有序的,我们在某个位置插入一个新得元素时,就必须按照刚才得方法搬移K之后的数据,但是,如果数组中存储的数据并没有任何规律,数组只是被当作一个存储数据的集合,在这种情况下吗,如果要将某个数组插入到第K个位置,为了避免大规模的数据搬移,我们还有一个简单的办法就是,直接将第K位的数据搬移到数组元素的最后,把新的元素直接放入第K个位置。
为了更好地理解,我们举一个例子。假设数组 a[10] 中存储如下 5 个元素:a,b,c,d,e。
我们现在需要将元素 x 插入到第 3 个位置。我们只需要将c 放入到 a[5],将 a[2] 赋值为 x 即可。最后,数组中的元素如下: a,b,x,d,e,c。
利用这种处理技巧,在特定场景下,在第 k 个位置插入一个元素的时间复杂度就会降为 O(1)。这个处理思想在快排中也会用到
,我会在排序那一节具体来讲,这里就说到这儿。
(2)删除操作
跟插入数据类似,如果我们要删除第 k 个位置的数据,为了内存的连续性,也需要搬移数据,不然中间就会出现空洞,内存就不连续
了。和插入类似,如果删除数组末尾的数据,则最好情况时间复杂度为 O(1);如果删除开头的数据,则最坏情况时间复杂度为 O(n)。实际上,在某些特殊场景下,我们并不一定非得追求数组中数据的连续性。如果我们将多次删除操作集中在一起执行,删除的效率是不是会提高很多呢?
我们继续来看例子。数组 a[10] 中存储了 8 个元素:a,b,c,d,e,f,g,h。现在,我们要依次删除 a,b,c 三个元素。
为了避免 d,e,f,g,h 这几个数据会被搬移三次,我们可先记录下已经删除的数据。每次的删除操作并不是真正地搬移数据,只是记录数据已经被删除。当数组没有更多空间存储数据时,我们再触发执行一次真正的删除操作,这样就大大减少了删除操作导致的数据搬移。
这不就是 JVM 标记清除垃圾回收算法的核心思想吗?
(3)警惕数组的访问越界问题
Java 代码,就会抛出 java.lang.ArrayIndexOutOfBoundsException
(4)容器能否完全替代数组?
ArrayList 最大的优势就是可以将很多数组操作的细节封装起来。比如前面提到的数组插入、删除数据时需要搬移其他数据等,另外,它还有一个优势,就是支持动态扩容。数组本身在定义的时候需要预先指定大小,因为需要分配连续的内存空间。如果我们申请了大小为 10 的数组,当第 11 个数据需要存储到数组中时,我们就需要重新分配一块更大的空间,将原来的数据复制过去,然后再将新的数据插入。
如果使用 ArrayList,我们就完全不需要关心底层的扩容逻辑,ArrayList 已经帮我们实现好了。每次存储空间不够的时候,它都会将空间自动扩容为 1.5 倍大小。不过,这里需要注意一点,因为扩容操作涉及内存申请和数据搬移,是比较耗时的。所以,如果事先能确定需要存储的数据大小,最好在创建 创建 ArrayList 的时候事先指定数据大小。
(5)是不是数组就无用武之地了呢?当然不是
1.Java ArrayList 无法存储基本类型,比如int、long,需要封装为 Integer、Long 类,而 Autoboxing、Unboxing 则有一定的性能,或者希望使用基本类型,就可以选用数组。
2. 如果数据大小事先已知,并且对数据的操作非常简单,用不到ArrayList 提供的大部分方法,也可以直接使用数组。
3.当要表示多维数组时,用数组往往会更加直观。比如 Object[][] array;而用容器的话则需要这样定义:
对于业务开发,直接使用容器就足够了,省时省力,毕竟损耗一丢丢性能,完全不会影响到系统整体的性能。
但如果你是做一些非常底层的开发,比如开发网络框架,性能的优化需要做到极致,这个时候数组就会优于容器,成为首选。
还有为什么数组要从0开始编号呢?
我认为
从数组存储的内存模型上来看,“下标”最确切的定义应该是“偏移(offset)”。前面也讲到,如果用 a 来表示数组的首地址,a[0] 就是偏移为 0 的位置,也就是首地址,a[k]就表示偏移 k 个 type_size 的位置,所以计算 a[k] 的内存地址只需要用这个公式:
a[k]_address = base_address + k * type_size
但是,如果数组从 1 开始计数,那我们计算数组元素 a[k]的内存地址就会变为:
a[k]_address = base_address + (k-1)*type_size
对比两个公式,我们不难发现,从 1 开始编号,每次随机访问数组元素都多了一次减法运算,对于 CPU 来说,就是多了一次减法指令;