树莓派5中部署 开源 RF-DETR 实时目标检测模型

RF-DETR是Roboflow基于Transformer架构开发的实时目标检测模型。

  1. 性能:在COCO数据集达到60+ mAP,推理速度25FPS

  2. 技术:融合DINOv2主干与单尺度特征提取,平衡精度与速度

  3. 应用:支持多分辨率训练和ONNX导出,适配边缘计算设备

RF-DETR是Roboflow推出的新一代实时目标检测模型,属于DETR(Detection Transformer)家族。它首次在COCO数据集上实现了60+的平均精度均值(mAP),同时保持25帧/秒以上的实时性能,打破了传统CNN模型在精度与速度上的权衡困局。

该模型创新性地结合了轻量级Transformer架构与预训练的DINOv2视觉主干网络,通过单尺度特征提取和多分辨率训练策略,在工业检测、自动驾驶等高要求场景中展现出显著优势。开发者可直接使用其预训练检查点,快速适配自定义数据集。

  • 高精度实时检测:在COCO数据集上达到60+ mAP,T4显卡推理延迟仅6ms

  • 领域自适应:通过DINOv2主干网络实现跨领域迁移,适用于航拍、工业等复杂场景

  • 动态分辨率:支持560-896px多分辨率切换,无需重训练即可调整精度/速度平衡

  • 便捷部署:提供PyTorch和ONNX格式模型,支持边缘设备部署

  • Transformer架构:采用DETR的编码器-解码器结构,利用自注意力机制捕捉全局上下文

  • DINOv2主干网络

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小牛牛先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值