语言模型简介:从规则到大语言模型

语言模型简介:从规则到大语言模型

在人工智能的领域内,语言模型是一个至关重要的概念。它旨在通过建模词汇序列的生成概率来提升机器的语言智能水平,使得机器能够模拟人类的说话和写作模式,自动输出文本。本文将简要介绍语言模型的发展历程,从基于规则和统计的方法到现代的神经语言模型和大语言模型。
在这里插入图片描述

简介

在这里插入图片描述
从文本生成角度,也可以这样定义语言模型:给定一个短语(一个词组或者一句话)语言模型可以生成(预测)
接下来的一个词。

在这里插入图片描述

第一阶段:基于规则的语言模型

在早期,语言模型主要依赖于人工编写的规则。这些规则通常基于语言学家对语言结构的理解,包括语法、语义和语用等方面。这种方法虽然在一定程度上能够模拟人类的语言行为,但其局限性也很明显:规则的制定需要大量的人力物力,且难以覆盖所有可能的语言现象。

第二阶段:基于统计的语言模型

为了克服基于规则的语言模型的局限性,研究人员开始尝试使用统计方法来构建语言模型。这种方法的核心思想是࿱

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

tester Jeffky

慷慨解囊,感激不尽。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值