语言模型简介:从规则到大语言模型
在人工智能的领域内,语言模型是一个至关重要的概念。它旨在通过建模词汇序列的生成概率来提升机器的语言智能水平,使得机器能够模拟人类的说话和写作模式,自动输出文本。本文将简要介绍语言模型的发展历程,从基于规则和统计的方法到现代的神经语言模型和大语言模型。
简介
从文本生成角度,也可以这样定义语言模型:给定一个短语(一个词组或者一句话)语言模型可以生成(预测)
接下来的一个词。
第一阶段:基于规则的语言模型
在早期,语言模型主要依赖于人工编写的规则。这些规则通常基于语言学家对语言结构的理解,包括语法、语义和语用等方面。这种方法虽然在一定程度上能够模拟人类的语言行为,但其局限性也很明显:规则的制定需要大量的人力物力,且难以覆盖所有可能的语言现象。
第二阶段:基于统计的语言模型
为了克服基于规则的语言模型的局限性,研究人员开始尝试使用统计方法来构建语言模型。这种方法的核心思想是